Online Scheduling of Multiproduct Batch Plants under Uncertainty

  • Sebastian Engell
  • Andreas Märkert
  • Guido Sand
  • Rüdiger Schultz
  • Christian Schulz


In this contribution, we propose a telescopic decomposition approach for solving scheduling problems from the chemical processing industries online. The general concept is realized for a real-world benchmark process by a two-level algorithm, which comprises a planning step with explicit consideration of uncertainties and a scheduling step where nonlinearities are include in the model. Both steps constitute optimization problems, which are modeled and solved by mathematical programming techniques. Besides conceptual considerations concerning online scheduling, we present the two mathematical models and their problem specific solution algorithms with some numerical results.


Schedule Problem Master Problem Schedule Decision Online Schedule Finish Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, S. J. Wright: Nonlinear predictive control and moving horizon estimation — an introductory overview. In: P. M. Frank (Ed.): Advances in Control (1999) 391–449CrossRefGoogle Scholar
  2. 2.
    G. Applequist, O. Samikoglu, J. Pekny, G. Reklaitis: Issues in the use, design and evolution of process scheduling and planning systems. ISA Transactions (1997)Google Scholar
  3. 3.
    T. Backx, O. Bosgra, W. Marquardt: Towards intentional dynamics in supply chain concious process operations. In: J. F. Pekny, G. E. Blau, B. Caranham. (Eds.): Proc. Foundations of Computer Aided Process Operations (FOCAP098), CACHE Publications, Michigan, (1998) Suppl.Google Scholar
  4. 4.
    M. H. Bassett, J. F. Pekny, G. V. Reklaitis: Decomposition techniques for the solution of large-scale scheduling problems. AIChE Journal 42 (1996) 3373–3387CrossRefGoogle Scholar
  5. 5.
    B. Bereanu: Minimum risk criterion in stochastic optimization. Econ. Comput. Econ. Cybern. Stud. Res. 2 (1981) 31–39MathSciNetGoogle Scholar
  6. 6.
    J. R. Birge, F. V. Louveaux: Introduction to stochastic programming. Springer, New York (1997)MATHGoogle Scholar
  7. 7.
    A. Brooke, D. Kendrick, A. Meeraus, R. Raman: GAMS — A user’s guide. GAMS Development Corporation, Washington (1998)Google Scholar
  8. 8.
    C. C. Carèe, R. Schultz: A two-stage stochastic program for unit commitment under uncertainty in a hydro-thermal power system. Priority Programme of the Deutsche Forschungsgemeinschaft “Real-Time Optimization of Large Systems”, Preprint 98–132, (1998, revised 1999)Google Scholar
  9. 9.
    C. C. Carøe, R. Schultz: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 23 (1999)Google Scholar
  10. 10.
    CPLEX Optimization Inc.: Using the CPLEX callable library. CPLEX Optimization3, (1989–2000)Google Scholar
  11. 11.
    D. Duffle, J. Pan: An overview of value at risk. Journal of Derivatives 4 (1997) 7–49CrossRefGoogle Scholar
  12. 12.
    G. D. Eppen, R. K. Martin, L. Schräge: A scenario approach to capacity planning. Oper. Res. 37 (1989) 517–527CrossRefGoogle Scholar
  13. 13.
    S. T. Harding, C. A. Floudas: Global optimization in multiproduct and multipurpose batch design under uncertainty. Ind. Eng. Chem. Res. 36 (1997) 1644–1664CrossRefGoogle Scholar
  14. 14.
    R. Hemmecke, R. Schultz: Decomposition in two-stage stochastic integer programs for real-time optimization. This volume.Google Scholar
  15. 15.
    S. J. Honkomp, S. Lombardo, O. Rosen, J. F. Pekny: The curse of reality — why scheduling problems are so difficult in practice. Comput. Chem. Eng. 24 (2000) 323–328CrossRefGoogle Scholar
  16. 16.
    P. Kall, S. Wallace: Stochastic Programming. Wiley, New York (1994)MATHGoogle Scholar
  17. 17.
    K. B. Kanakamedala, G. V. Reklaitis, V. Venkatasubramaniam: Reactive schedule modification in multipurpose batch chemical plants. Ind. Eng. Chem. Res. 33 (1994) 77–90CrossRefGoogle Scholar
  18. 18.
    A. J. King, S. Takriti: Issues in risk modeling for multi-stage systems. IBM Research Report, RC 20993, Illinois (1997)Google Scholar
  19. 19.
    K. C. Kiwiel: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Programm. 46 (1990) 105–122MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    K. C. Kiwiel: Exact penalty functions in proximal bundle methods for constraint convex nondifferentiable minimization. Math. Programm. 52 (1991) 285–302MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    K. C. Kiwiel: User’s guide for NOA 3.0: a fortran package for convex nondifferentiable optimization. System Research Institute, Polish Academy of Sciences, Warsaw (1994)Google Scholar
  22. 22.
    E. Kondili, C. C. Pantelides, R. W. H. Sargent: A general algorithm for short-term scheduling of batch operations. Part I: MILP formulation. Comput. Chem. Eng. 17 (1993) 211–227CrossRefGoogle Scholar
  23. 23.
    T. Löhl, C. Schulz, S. Engell: Sequencing of batch operations for a highly coupled production process: genetic algorithms vs. mathematical programming. Comput. Chem. Eng. 22 (1998) 579–585CrossRefGoogle Scholar
  24. 24.
    J. F. Pekny, G. V. Reklaitis: Towqards the convergence of theory an practice: a technology guide for scheduling/ planning methodology. In: J. F. Pekny, G. E. Blau, B. Caranham. (Eds.): Proc. Foundations of Computer Aided Process Operations (FOCAP098), CACHE Publications, Michigan (1998) 91–111Google Scholar
  25. 25.
    J. M. Pinto, I. E. Grossmann: A continuous time MILP model for short term scheduling of batch plants with pre-ordering constraints. Proc. Sixth European Symposium on Computer Aided Process Engineering (ESCAPE-6) (1996) 1197–1202Google Scholar
  26. 26.
    H. M. Markowitz: Portfolio selections: efficient diversification of investments. Wiley, New York (1959)Google Scholar
  27. 27.
    D. J. Mignon, S. J. Honkomp, G. V. Reklaitis: A framework for investigation schedule robustness under uncertainty. Comput. Chem. Eng. S19 (1995) 615–620CrossRefGoogle Scholar
  28. 28.
    G. L. Nemhauser, L. A. Wolsey: Integer and combinatorial optimization. Wiley, New York (1988)MATHGoogle Scholar
  29. 29.
    A. Prekopa: Stochastic programming. Kluwer, Dordrecht (1995)Google Scholar
  30. 30.
    J. Rauch (Ed.): Mehrproduktanlagen. Wiley, Weinheim (1998)Google Scholar
  31. 31.
    G. V. Reklaitis: Scheduling approaches for the batch process industries. ISA Transactions 34 (1995) 349–358CrossRefGoogle Scholar
  32. 32.
    G. Sand: Planning model for real-time optimization of multiproduct batch plants under uncertainty (in German). Priority Programme of the Deutsche Forschungsgemeinschaft “Real-Time Optimization of Large System”, Preprint 98–284, (1998)Google Scholar
  33. 33.
    G. Sand, S. Engell, A. Märkert, R. Schultz, C. Schulz: A hierarchical approach to realtime scheduling of a multiproduct batch plant with uncertainties. In: S. Pierucci (Ed.): Computer-Aided Chemical Engineering, Vol. 8: European Symposium on Computer-Aided Process Engineering-10 (2000) 1075–1080CrossRefGoogle Scholar
  34. 34.
    G. Sand, S. Engell, A. Märkert, R. Schultz, C. Schulz: Approximation of an ideal online scheduler for a multiproduct batch plant. Comput. Chem. Eng. 24 (2000) 361–367CrossRefGoogle Scholar
  35. 35.
    G. Schilling, C. C. Pantelides: A simple continuous-time process scheduling formulation and a novel solution algorithm. Proc. Sixth European Symposium on Computer Aided Process Engineering (ESCAPE-6) (1996) 1221–1226Google Scholar
  36. 36.
    C. Schulz, S. Engell, R. Rudolf: Scheduling of a multiproduct polymer batch plant. In: J. F. Pekny, G. E. Blau, B. Caranham (Eds.): Proc. Foundations of Computer Aided Process Operations (FOCAP098), CACHE Publications, Michigan (1998) 224–230Google Scholar
  37. 37.
    C. Schulz: PhD thesis: Modeling and optimization of a multiproduct batch plant (in German). University of Dortmund, Dortmund (2001) (in preparation)Google Scholar
  38. 38.
    N. Shah: Single- and multisite planning and scheduling: current status and future challenges. In: J. F. Pekny, G. E. Blau, B. Caranham. (Eds.): Proc. Foundations of Computer Aided Process Operations (FOCAP098), CACHE Publications, Michigan (1998) 75–90Google Scholar
  39. 39.
    D. E. Shobrys, D. C. White: Planning, scheduling and control systems: why can they not work together. Comput. Chem. Eng. 24 (2000) 163–173CrossRefGoogle Scholar
  40. 40.
    J. Viswanathan, I. E. Grossmann: A combined penalty function and outer approximation for MINLP optimization. Comput. Chem. Eng. 14 (1990) 769–782CrossRefGoogle Scholar
  41. 41.
    S. J. Wilkinson, N. Shah, C. C. Pantelides: Aggregate modelling of multipurpose plant operation. Comput. Chem. Eng. 19 (1995) S583-S588CrossRefGoogle Scholar
  42. 42.
    H. P. Williams: Model building in mathematical programming. John Wiley & Sons, New York (1994)Google Scholar
  43. 43.
    X. Zhang: PhD thesis: Algorithms for optimal process scheduling using nonlinear models. University of London, London (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Sebastian Engell
    • 1
  • Andreas Märkert
    • 2
  • Guido Sand
    • 1
  • Rüdiger Schultz
    • 2
  • Christian Schulz
    • 3
  1. 1.Fachbereich ChemietechnikUniversität DortmundGermany
  2. 2.Fachbereich MathematikGerhardt-Mercator-Universität DuisburgGermany
  3. 3.Process Systems Enterprise Ltd.LondonUK

Personalised recommendations