Optimal Control of a Continuous Distillation Process under Probabilistic Constraints

  • René Henrion
  • Pu Li
  • Andris Möller
  • Moritz Wendt
  • Günter Wozny


A continuous distillation process with random inflow rate is considered. The aim is to find a control (feed rate, heat supply, reflux rate) which is optimal with respect to energy consumption and which is robust at the same time with respect to the stochastic level constraints in the feed tank. The solution approach is based on the formulation of probabilistic constraints. An overall model including the dynamics of the distillation process and probabilistic constraints under different assumptions on the randomness of inflow is developed and numerical results are presented.


Distillation Column Inflow Rate Probabilistic Constraint Differential Algebraic Equation Filling Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Arellano-Garcia, R. Henrion, P. Li, A. Möller, W. Römisch, M. Wendt, G. Wozny: A model for the online optimization of integrated distillation columns under stochastic con-straints. DFG-Schwerpunktprogramm ‘Echtzeit-Optimierung grosser Systeme’, Preprint 98–32, 1998.Google Scholar
  2. 2.
    A. Barclay, P. E. Gill, J. B. Rosen: SQP Methods and their Application to Numerical Optimal Controll Report NA 97–3, Department of Mathematics, University of California, San Diego 1997.Google Scholar
  3. 3.
    E. Eich-Soellner, P. Lory, P. Burr, A. Kroner: Stationary and Dynamic Flowsheeting in the Chemical Engineering Industry. Surv. Math. Ind. 7 (1997), 1–28.MathSciNetMATHGoogle Scholar
  4. 4.
    P. E. Gill, W. Murray, M. A. Saunders: SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. Report NA 97–2, Department of Mathematics, University of California, San Diego 1997.Google Scholar
  5. 5.
    P. E. Gill, W. Murray, M. A. Saunders: User’s guide for SNOPT 5.3: A FORTRAN package for large-scale nonlinear programming. Report NA 97–2, Department of Math-ematics, University of California, San Diego, 1997.Google Scholar
  6. 6.
    J. Gmehling, U. Onken, W. Arlt: Vapour Liquid Equilibrium Data Collection, DECHEMA, Frankfurt, 1997.Google Scholar
  7. 7.
    E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin, 1996.MATHGoogle Scholar
  8. 8.
    R. Henrion, Structure and Stability of Probabilistic Storage Level Constraints. Preprint No. 23 (2000) of Stochastic Programming Eprint Series (SPEPS), submitted to: Proc. 4th GAMM/IFIP-Workshop on “STOCHASTIC OPTIMIZATION: Numerical Methods and Technical Applications”, held at UniBw Munich, June 27–29, 2000.Google Scholar
  9. 9.
    R. Henrion, P. Li, A. Möller, M. C. Steinbach, M. Wendt, G. Wozny: Stochastic Opti-mization for Operating Chemnical Processes under Uncertainty. This volume.Google Scholar
  10. 10.
    R. Henrion, A. Möller: Optimization of a continuous distillation process under random inflow rate. Preprint No. 00–4 des DFG-Schwerpunktprogramms ‘Echtzeit-Optimierung großer Systeme’, Berlin, 2000, submitted to: Computers & Mathematics with Applica-tions.Google Scholar
  11. 11.
    H. Z. Kister: Distillation Design. McGraw-Hill, New York, 1992.Google Scholar
  12. 12.
    R. Lamour: A Well-Posed Shooting Method for Transferable DAE’s. Numer. Math. 59 (1991), 815–829.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    D. B. Leineweber, H. G. Bock and J. P. Schiöder: Fast Direct Methods for Real-Time Optimization of Chemical Processes, in: (A. Sydow ed.) Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics 6,1997, pp. 451–456.Google Scholar
  14. 14.
    R. C. Reid, J. M. Prausnitz, B. E. Poling: The Properties of Gases and Liquids. McGraw-Hill, New York, 1987.Google Scholar
  15. 15.
    A. Rix: Modellierung und Prozeßführung wärmeintegrierter Destillationskolonnen. PhD Thesis, TU Berlin, 1997.Google Scholar
  16. 16.
    V. Schulz: Reduced SQP Methods for Large-Scale Optimal Control Problems in DAE with Application to Path Planning Problems for Satellite Mounted Robots, Dissertation, Universität Heidelberg, 1995.Google Scholar
  17. 17.
    M. C. Steinbach: Fast Recursive SQP Methods for Large-Scale Optimal Control Prob-lems, Dissertation, Universität Heidelberg, 1995.Google Scholar
  18. 18.
    O. von Stryk: Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen, Dissertation, VDI Fortschritt-Berichte Reihe 8, Nr. 441, VDI-Verlag, Düsseldorf, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • René Henrion
    • 1
  • Pu Li
    • 2
  • Andris Möller
    • 1
  • Moritz Wendt
    • 2
  • Günter Wozny
    • 2
  1. 1.Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)BerlinGermany
  2. 2.Institut für Prozess- und AnlagentechnikTechnische UniversitätBerlinGermany

Personalised recommendations