Instantaneous Control of Vibrating String Networks

  • Ralf Hundhammer
  • Günter Leugering


We introduce an algorithm for instantaneous control of vibrating string networks, where, after semidiscretization of the time variable, the resulting elliptic optimization systems are solved for each single time step. The elliptic network problems themselves are solved by domain decomposition. An interpretation of the algorithm as a local optimality system is given, as well as an interpretation as a local discrete feedback law. Numerical results are presented for simulation and control of several string networks.


Optimality System Domain Decomposition Transmission Condition Domain Decomposition Method Single Time Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-D. Benamou, (1995), “A domain decomposition method for the optimal control of systems governed by the Helmholtz equation”, Mathematical and numerical aspects of wave propagation, (Cohen, G. Ed.), SIAM, pp. 653–662Google Scholar
  2. 2.
    F. Bourquin, R. Hundhammer, G. Leugering (2000), “Instantaneous Control of Vibrating Strings and Membranes”, Proceedings of the Second European Conference on Structural Control, to appear.Google Scholar
  3. 3.
    H. Choi, R. Temam, P. Moin, J. Kim (1993), “Feedback control for unsteady flow and its applications to the stochastic Burgers equation”, J. Fluid Mech., pp. 253–509.Google Scholar
  4. 4.
    Q. Deng, “An Analysis for a Nonoverlapping Domain Decomposition Iterative Procedure”, SIAM J. SCI. COMP UT., Vol. 18, No 5, pp. 1517–1525Google Scholar
  5. 5.
    M. Hanke, P. C. Hansen (1993), “Regularization methods for large-scale problems”, Surv. Math. Ind., pp. 253–315Google Scholar
  6. 6.
    P. C. Hansen (1990), “Truncated singular value decomposition solutions to discrete illposed problems with ill-determined numerical rank”, SIAM J. Sci. Comp., Vol. 11, No. 3, pp. 503–518MATHCrossRefGoogle Scholar
  7. 7.
    M. Hinze, K. Kunisch (1997), “On Suboptimal Control Strategies for the Navier-Stokes Equations”, TU Berlin, Preprint No. 568/1997.Google Scholar
  8. 8.
    C. R. Houck, J. A. Joines, M. G. Kay, “A Genetic Algorithm for Function Optimization: A Matlab Implementation”, North Carolina State Univ., Preprint.Google Scholar
  9. 9.
    J. E. Lagnese and G. Leugering and Schmidt E.J.P.G. (1994), Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston.MATHCrossRefGoogle Scholar
  10. 10.
    G. Leugering (2000), “Domain decomposition of optimal control problems for dynamic networks of elastic strings.”, Comp. Opt. and Appl. 16/1 pp. 5–28.Google Scholar
  11. 11.
    J. L. Lions, O. Pironneau (1998), “Algorithmes parallèles pour la solution de problèmes aux limites”, C. R. Acad. Sci. Paris, t. 327, Série I, p. 947–952MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    P. A. Raviart, J. M. Thomas (1992), “Introduction à l’analyse numérique des équations aux dérivées partielles”, Masson.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ralf Hundhammer
    • 1
  • Günter Leugering
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations