Advertisement

Optimal Control Problems for the Nonlinear Heat Equation

  • Karsten Eppler
  • Fredi Tröltzsch
Chapter

Abstract

Some aspects of numerical analysis are surveyed for the optimal control of the nonlinear heat equation. In the analysis, special emphasis is on second order sufficient optimality conditions. In particular, the case of pointwise state constraints is adressed. Moreover, a numerical technique of instantaneous control type is presented.

Keywords

Optimal Control Problem Proper Orthogonal Decomposition Burger Equation Parabolic Problem Nonlinear Heat Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Arada, J.-P. Raymond, and F. Tröltzsch. On an augmented Lagrangian SQP method for a class of optimal control problems in Banach spaces. Submitted to Computational Optimization and Applications, to appear.Google Scholar
  2. 2.
    M. Bergounioux and K. Kunisch. Primal-dual strategy for state-constrained optimal control problems. Submitted.Google Scholar
  3. 3.
    E. Casas. Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control and Optimization, 35:1297–1327, 1997.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    E. Casas, F. Tröltzsch, and A. Unger. Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control and Optimization, 38(5):1369–1391, 2000.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    J. Chen, H. W. Engl, G. Landl, and K. Zeman. Optimal strategies for the cooling of steel strips in hot strip mills. Inverse Problems in Engineering, 2:103–118, 1995.CrossRefGoogle Scholar
  6. 6.
    H. Goldberg and F. Tröltzsch. On a SQP–multigrid technique for nonlinear parabolic boundary control problems. In W.W. Hager and P.M. Pardalos, editors, Optimal Control: Theory, Algorithms and Applications, pages 154–177, Dordrecht, 1997. Kluwer Academic Publishers B. V.Google Scholar
  7. 7.
    H. Goldberg and F. Tröltzsch. On a Lagrange-Newton method for a nonlinear parabolic boundary control problem. Optimization Methods and Software, 8:225–247, 1998.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    W. Grever, A. Binder, H. W. Engl, and K. Mörwald. Optimal cooling strategies in continuous casting of steel with variable casting speed. Inverse Problems in Engineering, 2:289–300, 1997.CrossRefGoogle Scholar
  9. 9.
    M. Gunzburger and S. Manservisi. The velocity tracking problem for Navier-Stokes flows with bounded distributed controls. SIAM J. Control and Optimization, 37:1913–1945, 1999.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    M. Gunzburger and S. Manservisi. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed controls. SIAM J. Numer. Analysis, To appear.Google Scholar
  11. 11.
    M. Heinkenschloss and E. W. Sachs. Numerical solution of a constrained control problem for a phase field model. In Control and Estimation of Distributed Parameter Systems, volume 118 of Int. Ser. Num. Math., pages 171–188. Birkhäuser-Verlag, 1994.CrossRefGoogle Scholar
  12. 12.
    M. Heinkenschloss and F. Tröltzsch. Analysis of the Lagrange-SQP-Newton method for the control of a phase field equation. Control and Cybernetics, 28(2):178–211, 1999.Google Scholar
  13. 13.
    M. Hinze. Optimal and instantaneous control of the instationary Navier-Stokes equations. Habilitation thesis, TU Berlin, 1999.Google Scholar
  14. 14.
    M. Hinze and S. Volkwein. Instantaneous control for the Burgers equation: Convergence analysis and numerical implementation. Tech. Report, Spezialforschungsbereich Optimierung und Kontrolle 170, Inst. f. Mathematik, Karl-Franzens-Universität Graz, 1999.Google Scholar
  15. 15.
    K. Ito and K. Kunisch. Augmented Lagrangian-SQP methods for nonlinear optimal control problems of tracking type. SIAMJ. Control and Optimization, 34:874–891, 1996.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    A. Kauffmann. Optimal control of the solid fuel ignition model. Thesis, TU Berlin, 1998.MATHGoogle Scholar
  17. 17.
    C. T. Kelley and E. Sachs. Multilevel algorithms for constrained compact fixed point problems. SIAM J. Sci. Comput. , 15:645–667, 1994.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    C. T. Kelley and E. Sachs. Solution of optimal control problems by a pointwise projected Newton method. SIAM J. Control and Optimization, 33:1731–1757, 1995.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    C. T. Kelley and E. Sachs. A trust region method for parabolic boundary control problems. SIAM J. Optimization, 9:1064–1081, 1999.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    R. Krengel, R. Standke, F. Tröltzsch, and H. Wehage. Mathematisches Modell einer optimal gesteuerten Abkühlung von Profilstählen in Kühlstrecken. Preprint 98–6, TU Chemnitz, Fakultät für Mathematik, 1996.Google Scholar
  21. 21.
    K. Kunisch and E. Sachs. Reduced SQP-methods for parameter identification problems. SIAM Journal Numerical Analysis, 29:1793–1820, 1992.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    K. Kunisch and S. Volkwein. Augmented Lagrangian-SQP techniques and their approximations. Contemporary Math. 209, pages 147–159, 1997.Google Scholar
  23. 23.
    K. Kunisch and S. Volkwein. Control of Burgers equation by a reduced order approach using proper orthogonal decomposition. Preprint, Spezialforschungsbereich Optimierung und Kontrolle 138, Inst. f. Mathematik, Karl-Franzens-Universität Graz, 1998.Google Scholar
  24. 24.
    R. Lezius and F. Tröltzsch. Theoretical and numerical aspects of controlled cooling of steel profiles. In H. Neunzert, editor, Progress in Industrial Mathematics at ECMI 94, pages 380–388. Wiley-Teubner, 1996.CrossRefGoogle Scholar
  25. 25.
    J. L. Lions. Contrôle optimal de systèmes gouvernès par des équations aux dérivées partielles. Dunod, Gauthier-Villars, Paris, 1968.MATHGoogle Scholar
  26. 26.
    J.-P. Raymond and F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete and Continuous Dynamical Systems, 6:431–450, 2000.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    J.-P. Raymond and H. Zidani. Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Applied Mathematics and Optimization, 39:143–177, 1999.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    F. Tröltzsch. Optimality conditions for parabolic control problems and applications, volume 62 of Teubner Texte zur Mathematik. B.G. Teubner Verlagsgesellschaft, Leipzig, 1984.Google Scholar
  29. 29.
    F. Tröltzsch. An SQP method for the optimal control of a nonlinear heat equation. Control and Cybernetics, 23(1/2):267–288, 1994.MathSciNetMATHGoogle Scholar
  30. 30.
    F. Tröltzsch, R. Lezius, R. Krengel, and H. Wehage. Mathematische Behandlung der optimalen Steuerung von Abkühlungsprozessen bei Profilstählen. In K.H. Hoffmann, W. Jäger, T. Lohmann, and H. Schunck, editors, Mathematik — Schlüsseltechnologie für die Zukunft, Verbundprojekte zwischen Universität und Industrie, pages 513–524. Springer-Verlag, 1997.CrossRefGoogle Scholar
  31. 31.
    F. Tröltzsch and A. Unger. Fast solution of optimal control problems in the selective cooling of steel. ZAMM, 81:447–456, 2001.MATHGoogle Scholar
  32. 32.
    A. Unger. Hinreichende Optimalitätsbedingungen 2. Ordnung und Konvergenz des SQP-Verfahrens für semilineare elliptische Randsteuerprobleme. PhD thesis, Technische Universität Chemnitz, 1997.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Karsten Eppler
    • 1
  • Fredi Tröltzsch
    • 2
  1. 1.Fakultät für MathematikTechnische Universität ChemnitzGermany
  2. 2.Fachbereich MathematikTechnische Universität BerlinGermany

Personalised recommendations