Skip to main content

Optimal Control Problems for the Nonlinear Heat Equation

  • Chapter
Online Optimization of Large Scale Systems

Abstract

Some aspects of numerical analysis are surveyed for the optimal control of the nonlinear heat equation. In the analysis, special emphasis is on second order sufficient optimality conditions. In particular, the case of pointwise state constraints is adressed. Moreover, a numerical technique of instantaneous control type is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Arada, J.-P. Raymond, and F. Tröltzsch. On an augmented Lagrangian SQP method for a class of optimal control problems in Banach spaces. Submitted to Computational Optimization and Applications, to appear.

    Google Scholar 

  2. M. Bergounioux and K. Kunisch. Primal-dual strategy for state-constrained optimal control problems. Submitted.

    Google Scholar 

  3. E. Casas. Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control and Optimization, 35:1297–1327, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Casas, F. Tröltzsch, and A. Unger. Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control and Optimization, 38(5):1369–1391, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Chen, H. W. Engl, G. Landl, and K. Zeman. Optimal strategies for the cooling of steel strips in hot strip mills. Inverse Problems in Engineering, 2:103–118, 1995.

    Article  Google Scholar 

  6. H. Goldberg and F. Tröltzsch. On a SQP–multigrid technique for nonlinear parabolic boundary control problems. In W.W. Hager and P.M. Pardalos, editors, Optimal Control: Theory, Algorithms and Applications, pages 154–177, Dordrecht, 1997. Kluwer Academic Publishers B. V.

    Google Scholar 

  7. H. Goldberg and F. Tröltzsch. On a Lagrange-Newton method for a nonlinear parabolic boundary control problem. Optimization Methods and Software, 8:225–247, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Grever, A. Binder, H. W. Engl, and K. Mörwald. Optimal cooling strategies in continuous casting of steel with variable casting speed. Inverse Problems in Engineering, 2:289–300, 1997.

    Article  Google Scholar 

  9. M. Gunzburger and S. Manservisi. The velocity tracking problem for Navier-Stokes flows with bounded distributed controls. SIAM J. Control and Optimization, 37:1913–1945, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Gunzburger and S. Manservisi. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed controls. SIAM J. Numer. Analysis, To appear.

    Google Scholar 

  11. M. Heinkenschloss and E. W. Sachs. Numerical solution of a constrained control problem for a phase field model. In Control and Estimation of Distributed Parameter Systems, volume 118 of Int. Ser. Num. Math., pages 171–188. Birkhäuser-Verlag, 1994.

    Chapter  Google Scholar 

  12. M. Heinkenschloss and F. Tröltzsch. Analysis of the Lagrange-SQP-Newton method for the control of a phase field equation. Control and Cybernetics, 28(2):178–211, 1999.

    Google Scholar 

  13. M. Hinze. Optimal and instantaneous control of the instationary Navier-Stokes equations. Habilitation thesis, TU Berlin, 1999.

    Google Scholar 

  14. M. Hinze and S. Volkwein. Instantaneous control for the Burgers equation: Convergence analysis and numerical implementation. Tech. Report, Spezialforschungsbereich Optimierung und Kontrolle 170, Inst. f. Mathematik, Karl-Franzens-Universität Graz, 1999.

    Google Scholar 

  15. K. Ito and K. Kunisch. Augmented Lagrangian-SQP methods for nonlinear optimal control problems of tracking type. SIAMJ. Control and Optimization, 34:874–891, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Kauffmann. Optimal control of the solid fuel ignition model. Thesis, TU Berlin, 1998.

    MATH  Google Scholar 

  17. C. T. Kelley and E. Sachs. Multilevel algorithms for constrained compact fixed point problems. SIAM J. Sci. Comput. , 15:645–667, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. T. Kelley and E. Sachs. Solution of optimal control problems by a pointwise projected Newton method. SIAM J. Control and Optimization, 33:1731–1757, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. T. Kelley and E. Sachs. A trust region method for parabolic boundary control problems. SIAM J. Optimization, 9:1064–1081, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Krengel, R. Standke, F. Tröltzsch, and H. Wehage. Mathematisches Modell einer optimal gesteuerten Abkühlung von Profilstählen in Kühlstrecken. Preprint 98–6, TU Chemnitz, Fakultät für Mathematik, 1996.

    Google Scholar 

  21. K. Kunisch and E. Sachs. Reduced SQP-methods for parameter identification problems. SIAM Journal Numerical Analysis, 29:1793–1820, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Kunisch and S. Volkwein. Augmented Lagrangian-SQP techniques and their approximations. Contemporary Math. 209, pages 147–159, 1997.

    Google Scholar 

  23. K. Kunisch and S. Volkwein. Control of Burgers equation by a reduced order approach using proper orthogonal decomposition. Preprint, Spezialforschungsbereich Optimierung und Kontrolle 138, Inst. f. Mathematik, Karl-Franzens-Universität Graz, 1998.

    Google Scholar 

  24. R. Lezius and F. Tröltzsch. Theoretical and numerical aspects of controlled cooling of steel profiles. In H. Neunzert, editor, Progress in Industrial Mathematics at ECMI 94, pages 380–388. Wiley-Teubner, 1996.

    Chapter  Google Scholar 

  25. J. L. Lions. Contrôle optimal de systèmes gouvernès par des équations aux dérivées partielles. Dunod, Gauthier-Villars, Paris, 1968.

    MATH  Google Scholar 

  26. J.-P. Raymond and F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete and Continuous Dynamical Systems, 6:431–450, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  27. J.-P. Raymond and H. Zidani. Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Applied Mathematics and Optimization, 39:143–177, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Tröltzsch. Optimality conditions for parabolic control problems and applications, volume 62 of Teubner Texte zur Mathematik. B.G. Teubner Verlagsgesellschaft, Leipzig, 1984.

    Google Scholar 

  29. F. Tröltzsch. An SQP method for the optimal control of a nonlinear heat equation. Control and Cybernetics, 23(1/2):267–288, 1994.

    MathSciNet  MATH  Google Scholar 

  30. F. Tröltzsch, R. Lezius, R. Krengel, and H. Wehage. Mathematische Behandlung der optimalen Steuerung von Abkühlungsprozessen bei Profilstählen. In K.H. Hoffmann, W. Jäger, T. Lohmann, and H. Schunck, editors, Mathematik — Schlüsseltechnologie für die Zukunft, Verbundprojekte zwischen Universität und Industrie, pages 513–524. Springer-Verlag, 1997.

    Chapter  Google Scholar 

  31. F. Tröltzsch and A. Unger. Fast solution of optimal control problems in the selective cooling of steel. ZAMM, 81:447–456, 2001.

    MATH  Google Scholar 

  32. A. Unger. Hinreichende Optimalitätsbedingungen 2. Ordnung und Konvergenz des SQP-Verfahrens für semilineare elliptische Randsteuerprobleme. PhD thesis, Technische Universität Chemnitz, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eppler, K., Tröltzsch, F. (2001). Optimal Control Problems for the Nonlinear Heat Equation. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds) Online Optimization of Large Scale Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04331-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04331-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07633-6

  • Online ISBN: 978-3-662-04331-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics