Some irrational numbers

  • Martin Aigner
  • Günter M. Ziegler


This was already conjectured by Aristotle, when he claimed that diameter and circumference of a circle are not commensurable. The first proof of this fundamental fact was given by Johann Heinrich Lambert in 1766. Our Book Proof is due to Ivan Niven, 1947: an extremely elegant one-page proof that needs only elementary calculus. Its idea is powerful, and quite a bit more can be derived from it, as was shown by Iwamoto and Koksma, respectively:
  • π2 is irrational (this is a stronger result!) and

  • e r is irrational for rational r ≠ 0.


Zeta Function Irrational Number Riemann Zeta Function Geometric Series Jacobi Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. M. Apostol: A proof that Euler missed: Evaluating ξ (2) the easy way Math. Intelligencer 5 (1983), 59–60.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    F. Beukers, J. A. C. Kolk & E. Calabi: Sums of generalized harmonic series and volumes, Neiuw Archief voor Wiskunde (3) 11 (1993), 217–224.MathSciNetMATHGoogle Scholar
  3. [3]
    C. Hermite: Sur la fonction exponentielle, Comptes rendus de l’Académie des Sciences (Paris) 77 (1873), 18–24; Œuvres de Charles Hermite, Vol. III Gauthier-Villars, Paris 1912, pp. 150-181.MATHGoogle Scholar
  4. [4]
    Y. Iwamoto: A proof that π2 is irrational, J. Osaka Institute of Science and Technology 1 (1949), 147–148.MathSciNetGoogle Scholar
  5. [5]
    J. F. Koksma: On Niven’s proof that n is irrational, Nieuw Archiv Wiskunde (2) 23 (1949), 39.MathSciNetMATHGoogle Scholar
  6. [6]
    J. C. Lagarias: An elementary problem equivalent to the Riemann hypothesis, Preprint arXiv: math.NT/0008177 v2, May 2001, 9 pages.Google Scholar
  7. [7]
    I. Niven: A simple proof that TT is irrational, Bulletin Amer. Math. Soc. 52 (1947), 509.MathSciNetCrossRefGoogle Scholar
  8. [8]
    A. van der Porten: A proof that Euler missed... Apéry’s proof of the irrationality of ξ (3). An informal report, Math. Intelligencer 1 (1979), 195–203.CrossRefGoogle Scholar
  9. [9]
    T. J. Ransford: An elementary proof of \( \sum\nolimits_1^\infty {\frac{1} {{n^2 }} = \frac{{\pi ^2 }} {6}} \), Eureka No. 42 Summer 1982, 3-5.Google Scholar
  10. [10]
    T. Rivoal: La fonction Zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, Comptes Rendus de l’Académie des Sciences (Paris), Ser. I Mathématique, 331 (2000), 267–270.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Martin Aigner
    • 1
  • Günter M. Ziegler
    • 2
  1. 1.Institut für Mathematik II (WE2)Freie Universität BerlinBerlinGermany
  2. 2.Institut für Mathematik, MA 6-2Technische Universität BerlinBerlinGermany

Personalised recommendations