Temperature Series of the Czech Republic and its Relation to Northern Hemisphere Temperatures in the Period 1961–1999

  • R. Brázdil
  • P. Štěpánek
  • V. Květoň


The relative homogeneity of monthly air temperatures is tested in the period 1961–1999 for 95 meteorological stations. From 93 homogenised series, mean temperature averages for the Czech Republic are calculated by both simple averaging and by gridding. The average series exhibits statistically significant increases for January, May, July, August, all seasons (except autumn) and the year. The fluctuations of Czech temperatures are compared with the series for the Northern Hemisphere. The effects of possible forcing (solar factor, volcanic activity, equivalent CO2, NAO) on these fluctuations are evaluated using multivariate linear regression.


Czech Republic Northern Hemisphere Multivariate Linear Regression Temperature Series Northern Hemisphere Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandersson, A, 1986: A homogeneity test applied to precipitation data. J. Climatol. 6, 661–675.CrossRefGoogle Scholar
  2. Brázdil, R. and Budíková, M., 1999: An urban bias in air temperature fluctuations at the Klementinum, Prague, the Czech Republic. Atmospheric Environment 33, 4211–4217.CrossRefGoogle Scholar
  3. Brázdil, R., Machů, R. and Budíková, M., 1994: Temporal and spatial changes in maxima and minima of air temperature in the Czech Republic in the period of 1951–1993. In: Contemporary Climatology (Brázdil, R. and Kolář, M., eds.), Masaryk University, 93–102.Google Scholar
  4. Brázdil, R. and Macková, J., 1998: Řada průměrných ročních teplot vzduchu pro Českou republiku v období 1828–1995. Meteorol. Zpr. 51, 17–21.Google Scholar
  5. Brázdil, R., Štekl, J. et al., 1999: Klimatické poměry Milešovky. Academia, Praha, 433 pp.Google Scholar
  6. Brázdil, R. and Štěpánek, P., 1998: Kolísání teploty vzduchu v Brně v období 1891–1995. Geografe — Sborník České geografické společnosti 103, 13–30.Google Scholar
  7. Brázdil, R. and Zolotokrylin, AN., 1995: The QBO signal in monthly precipitation fields over Europe. Theor. Appl. Climatol. 51, 3–12.CrossRefGoogle Scholar
  8. Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A. and Maskell, K., eds., 1996: Climate Change 1995. The Science of Climate Change. Cambridge University Press, 572 pp.Google Scholar
  9. Hurrell, J.W., 1995: Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269, 676–679.CrossRefGoogle Scholar
  10. Jones, P. D., 1994: Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J. Climate 7, 1794–1802.CrossRefGoogle Scholar
  11. Maronna, R. and Yohai, V.J., 1978: A bivariate test for the detection of a systematic change in mean. J. Amer. Stat. Assoc. 73, 640–645.CrossRefGoogle Scholar
  12. Novotný, J., 1995: Zpracování teplotních řad na horské stanici Milešovka. Meteorol. Zpr. 48, 145–149.Google Scholar
  13. Parker, D. E., Folland, C.K. and Jackson, M., 1995: Marine surface temperature: observed variations and data requirements. Clim. Change 31, 559–600.CrossRefGoogle Scholar
  14. Sato, M., Hansen, J.E., McCormick, M.P. and Pollack, J.B., 1993: Stratospheric aerosol optical depth, 1850–1990. J. Geoph. Res. 98, 22987–22994.CrossRefGoogle Scholar
  15. Schönwiese, C.-D., 1988: Volcanic activity parameters and volcanism-climate relationships within the recent centuries. Atmósfera 1, 141–156.Google Scholar
  16. Schönwiese, C.-D., 1989: Multivariate statistical assessment of greenhouse-induced climatic change and comparison with the results from general circulation models. In: DOE Workshop on “Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations”, Amherst, 14 pp.Google Scholar
  17. Schönwiese, C.-D. and Cress, A., 1988: An improved northern hemisphere volcanic activity parameter based on the Smithsonian chronology. Meteorol. Rdsch. 41, 89–92.Google Scholar
  18. Schönwiese, C.-D., Malcher, J. and Hartmann, C., 1986: Globale Statistik langer Temperaturund Niederschlagsreihen. Berichte des Instituts für Meteorologie und Geophysik der Universität Frankfurt/Main 65, 301 pp.Google Scholar
  19. Schönwiese, C.-D. and Runge, K., 1991: Some updated statistical assessments of the surface temperature response to increased greenhouse gases. Int. J. Climatol. 11, 237–250.CrossRefGoogle Scholar
  20. Schönwiese, C.-D. and Stähler, U., 1991: Multiforced statistical assessment of greenhouse-gas-induced surface air temperature change 1890–1985. Clim. Dyn. 6, 23–33.CrossRefGoogle Scholar
  21. Smělý, V., 1993: Jak se jeví vliv sluneční činnosti v pražské teplotní řadě. Meteorol. Zpr. 46, 54–58.Google Scholar
  22. Štěpánek, P., 2000: An Clim — software for homogenisation and statistical analysis of climatological time series. Department of Geography, Masaryk University, Brno.Google Scholar
  23. Walter, A., Denhard, M. and Schönwiese, C.-D., 1998: Simulation of global and hemispheric temperature variations and signal detection studies using neural networks. Meteorol. Zeitschr. N.F. 7, 171–180.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • R. Brázdil
    • 1
  • P. Štěpánek
    • 1
  • V. Květoň
    • 2
  1. 1.Department of GeographyMasaryk UniversityBrnoCzech Republic
  2. 2.Czech Hydrometeorological InstitutePraha 4 - KomořanyCzech Republic

Personalised recommendations