Advertisement

Climate Change and Fire Weather Risk

  • Ana C. Carvalho
  • Anabela Carvalho
  • Ana I. Miranda
  • Carlos Borrego
  • Alfredo Rocha
Chapter

Abstract

The climate and the meteorological conditions throughout the year are of extreme importance in the deflagration and propagation of forest fires. Using the registered data from meteorological stations and forecasts, it is possible to establish the denominated meteorological fire risk index. This, mathematically, translates the fire risk that a given region is subject to, taking into consideration only meteorological conditions. The probable climatic changes, related to the emission of greenhouse gases, may come to affect the fire risk of a given region. The approach adopted to evaluate the impact of climate change on the fire weather risk (FWR) over Portugal is based on a numerical downscaling technique (from global to regional scale). The results of a general circulation model, for presentday conditions and for a climate centred in the year 2050, are used as initial and boundary conditions for a mesoscale model of atmospheric flow. This was applied to an area including Continental Portugal, for both considered situations, in terms of global simulation. The information obtained has been used to calculate the FWR with reference to the two simulated situations. Two FWR indexes were applied, the Angström and the Lourenço indexes. Globally, the prognosis is for an increase in the meteorological fire risk in Continental Portugal, for a climate scenario corresponding to the year 2050.

Keywords

General Circulation Model Forest Fire Risk Index Mesoscale Model Fire Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldasano, J.M., Costa, M., Cremades, L., Flassak, T. and Wortmann-Vierthaler, M., 1993: Influence of traffic conditions on the air quality of Barcelona during the Olympic Games’92. Air Pollution Modelling and Its Application X, New York: S-V. (Gryning & M.M. Millán, Eds.), Plenum Press, 643–644.Google Scholar
  2. Boer, G. J., Arpe, K., Blackburn, M., Déqué, M., Gates, T.L., le Treut, H., Roeckner, E., Sheinin, D.A., Simmonds, I., Smith, R.N.B., Tokioka, T., Wetherald, R.T. and Williamson, D., 1991: An intercomparison of the climates simulated by 14 atmospheric general circulation models. World Meteorological Organization/International Council of Scientific Unions World Climate Research Programme, Report No. 15, WMO/TD — No. 425, 37 pp. plus maps.Google Scholar
  3. Borrego, C., Barros, N., Miranda, A. I., Carvalho, A. C. and Valinhas, M. J., 1998: Validation of two photochemical numerical systems under complex mesoscale circulations. 23r d Int. Tech. Meeting of NATO/CCMS on “Air Pollution Modelling and its Application “, September 28-October 2, Varna, Bulgaria, 411–418.Google Scholar
  4. Borrego, C., Carvalho, A.C. and Miranda, A. I., 1999: Numerical simulation of wind flow over complex terrain. Measuring and Modelling Investigation of Environmental Processes (R. San Jose, Ed.), 2, 271–297.Google Scholar
  5. Chandler, C., Cheney, Ph., Thomas, Ph., Trabaud, L. and Williams, D., 1991: Fire in Forest. Volume I: Forest Fire Behaviour and Effects. Krieger Publishing Company, Malabar, Florida.Google Scholar
  6. CNAFF, 1991: Manual do Vigilante da Floresta. (Coordenação Nacional de Acções de Fogos Florestais — C.N.A.F.F., Ed.).Google Scholar
  7. Coutinho, M. and Miranda, A. I., 1993: Aplicação de modelos meteorológicos de mesoscala para o estudo da qualidade do ar em Portugal. 2° Congresso Nacional de Engenheiros do Ambiente. Maia.Google Scholar
  8. Coutinho, M., Rocha, A. and Borrego, C., 1994: Numerical simulation of meso-meteorological circulations in the Lisbon region. Air Pollution Modelling and its Applications X. (S. Gryning and M. Millan, eds), Plenum Press, 53–62.CrossRefGoogle Scholar
  9. Coutinho, M., Baldasano, J. M. and Calbò, J., 1994: Simulation of typical meso-meteorological circulations occurring during winter in the Barcelona region. Air Pollution II, Vol I: Computer simulation. (J. Baldasano, C. Brebbia, H. Power and P. Zannetti,Eds.), Computational Mechanics Publications, 23–30.Google Scholar
  10. Flanningan, M., Wottom, M., Carcaillet, C., Richard, P., Campbell, I. And Bergeron, Y., 1998: Fire weather: Past, Present and Future. Proc. from the3 rd International Conference on Forest Fires Research and the14 th Conference on Fire and Forest Meteorology. Luso, 16–20 November 1998, Portugal. Volume I, 113–128.Google Scholar
  11. Flassak, T., 1990: Ein nicht-hydrostatisches mesoslaliges modell zur beschreibung der dynamik der planetaren grezschicht. Fortsch Ber. — VDI, Reihe 15, Nr 74, VDI — Verlag. http://climate.usfs.msu.edu/climatology/firewxGoogle Scholar
  12. Lourenço, L., 1991: Uma fórmula expedita para determinar o ĺndice Meteorológico de risco de eclosão de fogos florestais em Portugal Continental. Cadernos Científicos sobre Incêndios Florestais. N°2 Separata. Grupo de Mecânica dos Fluídos, Dep. Engenharia Mecânica, Universidade de Coimbra.Google Scholar
  13. Miranda, A. I. and Borrego, C., 1996: A prognostic meteorological model applied to the study of a forest fire. The Int. Jour. of Wildland Fire 6, 157–163.CrossRefGoogle Scholar
  14. Miranda, A. I., 1998: Efeito dos incêndios florestais na qualidade do ar. Ph.D Thesis, University of Aveiro, Aveiro, Portugal.Google Scholar
  15. Mitchell, J. F. B. and Johns, T. C., 1997: On modification of global warming by sulfate aerosols. J. Climate 10, 245–267.CrossRefGoogle Scholar
  16. Moussiopoulos N., Flassak, T., Sahm, P. and Berlowitz, D., 1993: Simulations of the wind field in Athens with the non-hydrostatic mesoscale model MEMO. Environmental Software, 8–29.Google Scholar
  17. Moussiopoulos, N., Sahm and Proyou, A., 1994: Numerical simulation of the wind field in Athens with the non-hydrostatic mesoscale model MEMO. Environment Software, 8–29.Google Scholar
  18. Rocha, A. and Gomes, J., 1994: Modelizaçâo do Clima da Península Ibérica. 9a Conferência Nacional de Física — Física94 90, 29 pp.Google Scholar
  19. Simmonds, I., and Lynch, A., 1992: The influence of pre-existing soil moisture content on Australian winter climate. Int. J. Climatology, 12, 33–54.CrossRefGoogle Scholar
  20. Simmonds, I., Trigg, G. and Law, R., 1988: The Climatology of the Melbourne University General Circulation Model. Publi. N° 31, Dept. of Meteor., University of Melbourne, 67 pp.Google Scholar
  21. Tackle, E., Bramer, D., Heilman, W. and Thompson, M., 1994: A Synoptic Climatology for Forest Fires in the NE US and Future Implications from GCM Simulations. International Journal of Wildland Fire 4, 217–224.CrossRefGoogle Scholar
  22. Viegas, D., Sol, B., Bovio, G., Nosenzo, A. and Ferreira, A., 1994: Comparative study of various methods of fire danger evaluation in Southern Europe. Proc. of the 2 nd International Conference on Forest Fires Research. Coimbra, 21–24 November 1994, Portugal. Vol. II. 571–590.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ana C. Carvalho
    • 1
  • Anabela Carvalho
    • 1
  • Ana I. Miranda
    • 1
  • Carlos Borrego
    • 1
  • Alfredo Rocha
    • 2
  1. 1.Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  2. 2.Physics DepartmentUniversity of AveiroAveiroPortugal

Personalised recommendations