Skip to main content

Assessment of a Regional Climate for South America: A Dynamical Downscaling Approach

  • Chapter
Detecting and Modelling Regional Climate Change

Abstract

The current coarse resolution of general circulation models (GCMs) does not provide reliable estimates of precipitation and other variables at the appropriate scales required for regional climate studies over the South American region. To overcome this problem, one possibility is to perform regional climate simulations using limited-area models nested in global models. A research effort aimed at the development of this downscaling technique for the region extending from the South Pacific across South America to the western South Atlantic is now under way at the Centro de Investigaciones del Mar y la Atmósfera (CIMA), Buenos Aires. The technique consists of using the output of GCM simulations to provide initial driving conditions and time-dependent lateral boundary conditions for regional climate model (RCM) simulations over South America and the adjacent oceans (one way nesting). The singularity of this nesting system is that the global model itself has a stretched, variable horizontal resolution, with the grid irregularly spaced in the meridional direction. This stretched grid is introduced in order to improve resolution in a latitudinal band over the region of interest. Hence, we use a “hybrid” strategy in which a regional model is nested in a global variable-resolution model, combining traditional nesting with GCM zooming, at a relatively low computational cost. This pilot study introduces an initial diagnosis of the capabilities of the RCM for simulating climate in the South American region. Our preliminary results suggest that the nesting technique is a computationally low-cost alternative suitable for simulating regional climate features. However, before applying this nesting system to problems involving the local response to climate change, additional simulations, tuning of parameters and further diagnosis are clearly needed to represent regional patterns more precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carril A. F., Menéndez C. G. and Nuñez M. N., 1997: Climate change scenarios over the South American region: an intercomparison of coupled general atmosphere-ocean circulation models. Int. J. Climatol. 17, 1613–1633.

    Article  Google Scholar 

  • Dé qué M., Marquet P. and Jones R.G., 1998: Simulations of climate change over Europe using a global variable resolution general circulation model. Clim. Dyn., 14, 173–189.

    Article  Google Scholar 

  • Giorgi F., 1995: Perspectives for regional earth system modelling. Global and Planetary Change 10, 23–42.

    Article  Google Scholar 

  • Giorgi F. and Mearns L. O., 1991: Approaches to the simulation of regional climate change: A review. Rev. Geophys. 29, 191–216.

    Article  Google Scholar 

  • Harzallah A. and Sadourny R., 1995: Internal versus SST-forced atmospheric variability as simulated by an Atmospheric General Circulation Model. J. Climate 8, 474–495.

    Article  Google Scholar 

  • Jones W. J., Hamilton K. and Wilson R. J., 1997: A very high resolution general circulation model simulation of the global circulation in Austral winter. J. of Atmos. Sci. 54, 1107–1116.

    Article  Google Scholar 

  • Labraga, J. C., 1997: The climate change in South America due to a doubling in the CO2 concentration: intercomparison of general circulation model equilibrium experiments. Int. J. Climatol 17, 377–398.

    Article  Google Scholar 

  • Legates D. R. and Willmott C. J., 1990a: Mean seasonal and spatial variability in gauge corrected global precipitation. Int. J. Clim. 10, 111–127.

    Article  Google Scholar 

  • Legates D. R. and Wilmott C. J., 1990b: Mean seasonal and spatial variability in global surface air temperature. Theor. and Appl. Clim. 41, 11–21.

    Article  Google Scholar 

  • Marinucci M. R. and Giorgi F., 1992: A 2xCO2 climate change scenario over Europe generated using a limited area model. Part I: present day climate simulation. J. Geophys. Res. 97, 9989–10009.

    Article  Google Scholar 

  • McGregor J. L., Walsh K. J. and Katzfey J. J., 1993: Nested modelling for regional climate studies. In: Modelling Change in Environmental Systems (A.J. Jakeman et al., eds.), Chichester: John Wiley, 367–386.

    Google Scholar 

  • McGregor J. L. and Walsh K. J., 1994: Climate change simulations of Tasmanian precipitation using multiple nesting. J. Geophys. Res. 99, 20889–20905.

    Article  Google Scholar 

  • McGregor J. L., 1997: Regional climate modelling. Meteorol Atmos Phys 63, 105–117.

    Article  Google Scholar 

  • Menéndez C.G., 1994: Impacto del hielo marino sobre dos ciclones subantárticos. Meteorologica 19, 43–51.

    Google Scholar 

  • Menéndez C. G., Saulo A. C. and Li Z. X., 2000a: A regional climate model for South America. Preprints of the Sixth International Conference on Southern Hemisphere Meteorology and Oceanography, 3–7 April, Chile, A. M. S., 218–219.

    Google Scholar 

  • Menéndez C. G., Saulo A. C. and Li Z. X., 2000b: Simulation of South American wintertime climate with a nesting system. Clim. Dyn., in press.

    Google Scholar 

  • Orlanski I. and Katzfey J. J., 1987: Sensitivity of model simulations for a coastal cyclone. Mon. Wea. Rev. 115, 2792–2821.

    Article  Google Scholar 

  • Orlanski I., Katzfey J. J., Menéndez C. G. and Marino M., 1991: Simulation of an extratropical cyclone in the Southern Hemisphere: Model sensitivity. J. Atmos. Sci. 48, 2293–2311.

    Article  Google Scholar 

  • Renwick J. A., Katzfey J. J., Nguyen K. C. and McGregor J. L., 1998: Regional model simulations of New Zealand climate. J. Geophys. Res. 103, D6, 5973–5982.

    Article  Google Scholar 

  • Sadourny R. and Laval K., 1984: January and July performance of the LMD general circulation model. In: New Perspectives in Climate Modeling, (A. Berger and C. Nicolis, eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Seluchi M. E. and Saulo A. C., 1998: Possible mechanisms yielding an explosive coastal cyclogenesis over South America: experiments using a Limited Area Model. Aust. Met. Mag. 47, 309–320.

    Google Scholar 

  • Wild M., Ohmura A., Gilgen H. and Roeckner E., 1995: Regional climate simulation with a high resolution GCM: surface radiative fluxes. Clim. Dyn. 11, 469–486.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menéndez, C.G., Saulo, A.C., Solman, S.A., Nuñez, M.N. (2001). Assessment of a Regional Climate for South America: A Dynamical Downscaling Approach. In: India, M.B., Bonillo, D.L. (eds) Detecting and Modelling Regional Climate Change. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04313-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04313-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07594-0

  • Online ISBN: 978-3-662-04313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics