Phase Sequences in Processing

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)


PZT and SBT exist in several different phases. When PZT films are deposited under normal conditions the phase that is formed has the pyrochlore structure. These pyrochlores are generally ferroelectric but only at cryogenic temperatures; thus, they are not useful for room temperature ferroelectric memory devices. The pyrochlores deposited by sputtering, sol—gel spin-on, or other techniques are subsequently subjected to an annealing cycle, either in a furnace (typically an hour at 650°C) or via RTA (Rapid Thermal Annealing), typically for 90 seconds to a maximum temperature of about 800°C. These heat treatments result in 100% of the material being converted to the ferroelectric perovskite phase. Usually this heating process is carried out in an oxygen atmosphere to prevent oxygen loss from the film. The lowest temperature at which 100% of the film has been successfully converted to perovskite is 450°C [334]. Recently it has been suggested [334] that the pyrochlore phase is stabilized by Pb4+ ions in PZT, and efforts are underway to reduce this Pb4+ concentration to see if even lower temperature conversion to the perovskite phase is possible.


Phase Sequence Fluorite Structure Furnace Anneal Pyrochlore Structure EXAFS Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 334.
    Wersing W., Siemens Corp., Eur. Conf. Polar Devices (Bled, Slovenia, 1996);Google Scholar
  2. 334a.
    Iembo A. et al., Integ. Ferroelec. 18, 397 (1997)CrossRefGoogle Scholar
  3. 335.
    Zhou W., J. Sol. St. Chem. 101, 1 (1992)CrossRefGoogle Scholar
  4. 336.
    Rodriguez M. A., Boyle T. J., et al., Proc. ISIF 1996Google Scholar
  5. 337.
    Hartmann A. J., et al., Ferroelec. Lett. 23, 75 (1997)CrossRefGoogle Scholar
  6. 338.
    Rae D., Thompson J. G., and Withers R. L., Acta Cryst. B48, 418 (1992);Google Scholar
  7. 338a.
    Rae D., Thompson J. G., and Withers R. L., Acta Cryst. B46, 474 (1990)CrossRefGoogle Scholar
  8. 339.
    Subbarao E. C., J. Chem. Phys. 34, 695 (1961);CrossRefGoogle Scholar
  9. 339a.
    Subbarao E. C., Phys. Rev. 122, 804 (1961)CrossRefGoogle Scholar
  10. 340.
    Atsuki T., Soyama N., Yonezawa T., and Ogi K., Jpn. J. Appl. Phys. 34, 5096 (1995)CrossRefGoogle Scholar
  11. 341.
    Noguchi T., Hase T., and Miyasaka Y., Jpn. J. Appl. Phys. 35, 4900 (1996)CrossRefGoogle Scholar
  12. 342.
    Watanabe K., Tanaka M., Sumitomo E., Katori K., Yagi H., and Scott J. F., Appl. Phys. Lett. 73, 126 (1998);CrossRefGoogle Scholar
  13. 342a.
    pure SBN has also been studied by Yi J. H. et al., J. Phys. IV France 8, 225 (1998)Google Scholar
  14. 343.
    Kapitza P., Proc. Roy. Soc. (London) A119, 428 (1928) 344.Google Scholar
  15. 343a.
    Bussem W., Gross F., and Hermann K., Ann. Phys. 64, 537 (1930)Google Scholar
  16. 345.
    Suhrmann R. and Schnackenberg H., Z. Phys. 119, 287 (1942)CrossRefGoogle Scholar
  17. 346.
    Van Itterbeck A. and de Bock A., Ann. Phys. 11, 635 (1945)Google Scholar
  18. 347.
    Sondheimer E. H., Adv. Phys. 1, 1 (1952)CrossRefGoogle Scholar
  19. 348.
    Pashley D. W., Adv. Phys. 5, 173 (1956)CrossRefGoogle Scholar
  20. 349.
    Heine V., Proc. Phys. Soc. A69, 513 (1956)Google Scholar
  21. 350.
    Colombani A. and Huet P., Structure and Properties of Thin Films, eds. Neugebauer C. A., Newkirk J. B., and Vermilyea D. A. (Wiley, New York, 1959) p.253Google Scholar
  22. 351.
    Buckel W., Ibid., p.53Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations