Skip to main content

Phase Sequences in Processing

  • Chapter
Ferroelectric Memories

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 3))

Abstract

PZT and SBT exist in several different phases. When PZT films are deposited under normal conditions the phase that is formed has the pyrochlore structure. These pyrochlores are generally ferroelectric but only at cryogenic temperatures; thus, they are not useful for room temperature ferroelectric memory devices. The pyrochlores deposited by sputtering, sol—gel spin-on, or other techniques are subsequently subjected to an annealing cycle, either in a furnace (typically an hour at 650°C) or via RTA (Rapid Thermal Annealing), typically for 90 seconds to a maximum temperature of about 800°C. These heat treatments result in 100% of the material being converted to the ferroelectric perovskite phase. Usually this heating process is carried out in an oxygen atmosphere to prevent oxygen loss from the film. The lowest temperature at which 100% of the film has been successfully converted to perovskite is 450°C [334]. Recently it has been suggested [334] that the pyrochlore phase is stabilized by Pb4+ ions in PZT, and efforts are underway to reduce this Pb4+ concentration to see if even lower temperature conversion to the perovskite phase is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wersing W., Siemens Corp., Eur. Conf. Polar Devices (Bled, Slovenia, 1996);

    Google Scholar 

  2. Iembo A. et al., Integ. Ferroelec. 18, 397 (1997)

    Article  CAS  Google Scholar 

  3. Zhou W., J. Sol. St. Chem. 101, 1 (1992)

    Article  CAS  Google Scholar 

  4. Rodriguez M. A., Boyle T. J., et al., Proc. ISIF 1996

    Google Scholar 

  5. Hartmann A. J., et al., Ferroelec. Lett. 23, 75 (1997)

    Article  CAS  Google Scholar 

  6. Rae D., Thompson J. G., and Withers R. L., Acta Cryst. B48, 418 (1992);

    Google Scholar 

  7. Rae D., Thompson J. G., and Withers R. L., Acta Cryst. B46, 474 (1990)

    Article  Google Scholar 

  8. Subbarao E. C., J. Chem. Phys. 34, 695 (1961);

    Article  CAS  Google Scholar 

  9. Subbarao E. C., Phys. Rev. 122, 804 (1961)

    Article  CAS  Google Scholar 

  10. Atsuki T., Soyama N., Yonezawa T., and Ogi K., Jpn. J. Appl. Phys. 34, 5096 (1995)

    Article  CAS  Google Scholar 

  11. Noguchi T., Hase T., and Miyasaka Y., Jpn. J. Appl. Phys. 35, 4900 (1996)

    Article  CAS  Google Scholar 

  12. Watanabe K., Tanaka M., Sumitomo E., Katori K., Yagi H., and Scott J. F., Appl. Phys. Lett. 73, 126 (1998);

    Article  CAS  Google Scholar 

  13. pure SBN has also been studied by Yi J. H. et al., J. Phys. IV France 8, 225 (1998)

    Google Scholar 

  14. Kapitza P., Proc. Roy. Soc. (London) A119, 428 (1928) 344.

    Google Scholar 

  15. Bussem W., Gross F., and Hermann K., Ann. Phys. 64, 537 (1930)

    CAS  Google Scholar 

  16. Suhrmann R. and Schnackenberg H., Z. Phys. 119, 287 (1942)

    Article  CAS  Google Scholar 

  17. Van Itterbeck A. and de Bock A., Ann. Phys. 11, 635 (1945)

    Google Scholar 

  18. Sondheimer E. H., Adv. Phys. 1, 1 (1952)

    Article  Google Scholar 

  19. Pashley D. W., Adv. Phys. 5, 173 (1956)

    Article  Google Scholar 

  20. Heine V., Proc. Phys. Soc. A69, 513 (1956)

    Google Scholar 

  21. Colombani A. and Huet P., Structure and Properties of Thin Films, eds. Neugebauer C. A., Newkirk J. B., and Vermilyea D. A. (Wiley, New York, 1959) p.253

    Google Scholar 

  22. Buckel W., Ibid., p.53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, J.F. (2000). Phase Sequences in Processing. In: Ferroelectric Memories. Springer Series in Advanced Microelectronics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04307-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04307-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08565-9

  • Online ISBN: 978-3-662-04307-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics