Advertisement

Charge Injection and Fatigue

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

Fatigue is the characteristic of ferroelectrics that the amount of charge q that is switched with repetitive bipolar applied voltages decreases with cycling. This is usually described as a decrease in remanent polarization P r (N) with switching cycles N. However, in reality the polarization per primitive crystallographic unit cell remains unchanged with N. Instead, the number of cells and domains that switch decreases slowly with increasing N, as domain walls become pinned. This pinning can occur at grain boundaries, at surfaces, or at other defect sites, particularly extended defects.

Keywords

Oxygen Vacancy Domain Wall Schottky Barrier Height Charge Injection Fatigue Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 275.
    Scott J. F. and Pouligny B., J. Appl. Phys. 64, 1547 (1988)CrossRefGoogle Scholar
  2. 276.
    Al-Shareef H. N., Dimos D., Warren W. L., and Tuttle B. A., Integ. Ferroelec. 15, 53 (1997)CrossRefGoogle Scholar
  3. 277.
    Dimos D. et al., J. Appl. Phys. 76, 4305 (1994);CrossRefGoogle Scholar
  4. 277a.
    Dimos D. et al., Integ. Ferroelec. 2, 477 (1992)Google Scholar
  5. 278.
    Warren W. L., Tuttle B. A., and Dimos D., Appl. Phys. Lett. 67, 1426 (1995);CrossRefGoogle Scholar
  6. 178a.
    Warren W. L. et al., J. Appl. Phys. 77, 6695 (1995);CrossRefGoogle Scholar
  7. 178b.
    Warren W. L. et al., MRS Bull. 21, 40 (1996)Google Scholar
  8. 279.
    de Wette F., NATO Conf. Electron—Phonon Interactions (Erice, Sicily, June 1997) unpublished manuscriptGoogle Scholar
  9. 280.
    Colla E. L., Taylor D. V., Tagantsev A. K., and Setter N., Appl. Phys. Lett. (in press);Google Scholar
  10. 280.
    Lee H. S. and Lee K. B., J. Phys. IV France 8, 209 (1998)Google Scholar
  11. 281.
    Colla E. L., Tagantsev A. K., Tasylor D. V., and Kholkin A. L., Integ. Ferroelec. 22, 1045 (1998);CrossRefGoogle Scholar
  12. 281a.
    Colla E. L., Tagantsev A. K., Tasylor D. V., and Kholkin A. L., J. Korean Phys. Soc. 32, 51353 (1998)Google Scholar
  13. 282.
    Gruverman A., Auciello O., and Tokumoto H., Appl. Phys. Lett. 69, 3191 (1996);CrossRefGoogle Scholar
  14. 282a.
    Gruverman A., Auciello O., and Tokumoto H., Integ. Ferroelec. 19, 49 (1998)CrossRefGoogle Scholar
  15. 283.
    Melnick B. M., Scott J. F., Paz de Araujo C. A., and McMillan L. D., Ferroelec. 135, 163 (1992)CrossRefGoogle Scholar
  16. 284.
    Zafar S., Hradsky B., Gentile D., Chu P., Jones R. E., and Gillespie S., J. Appl. Phys. (in press 1999)Google Scholar
  17. 285.
    Nowotny J. and Sloma N., Surface and Near-Surface Chemistry of Oxide Ceramic Materials, eds. Nowotny J. and Dufour L. C. (Elsevier, Amsterdam, 1988)Google Scholar
  18. 286.
    Waser R., Baiatu T., and Hardtl K., J. Am. Ceram. Soc. 73, 1645 (1990);CrossRefGoogle Scholar
  19. 286a.
    Waser R., Baiatu T., and Hardtl K., J. Am. Ceram. Soc. 73, 1654 (1990);CrossRefGoogle Scholar
  20. 286b.
    Waser R., Baiatu T., and Hardtl K., J. Am. Ceram. Soc. 73, 1663 (1990)CrossRefGoogle Scholar
  21. 287.
    Arlt G. and Neumann H., Ferroelectrics 87, 109 (1988);CrossRefGoogle Scholar
  22. 287a.
    Arlt G. and Robels U., Integ. Ferroelec. 3, 343 (1993)CrossRefGoogle Scholar
  23. 288.
    Dawber M., B. S. Honours Thesis, Univ. New South Wales (1999);Google Scholar
  24. 288a.
    Dawber M. and Scott J. F., Appl. Phys. Lett. 76, 1060 (2000)CrossRefGoogle Scholar
  25. 289.
    Brennan C., Ferroelectrics 150, 199 (1993)CrossRefGoogle Scholar
  26. 290.
    Yoo I. K. and Desu S. B., Integ. Ferroelec. 3, 365 (1993);CrossRefGoogle Scholar
  27. 290a.
    Desu S. B., Phys. Stat. Sol. A151, 467 (1995)CrossRefGoogle Scholar
  28. 291.
    Dey S. K., Ferroelectrics (in press 1999)Google Scholar
  29. 292.
    Mihara T., Watanabe H., and Paz de Araujo C. A., Jpn. J. Appl. Phys. 33, 3996 (1994)CrossRefGoogle Scholar
  30. 293.
    Scott J. F., Integ. Ferroelec. 1, 1 (1998)CrossRefGoogle Scholar
  31. 294.
    Zafar S. et al., Appl. Phys. Lett. 73, 1 (1998)CrossRefGoogle Scholar
  32. 295.
    Smyth D., Ferroelectric Thin Films (Gordon & Breach, New York, 1996) eds. C. Araujo, J. F. Scott, and G. W. TaylorGoogle Scholar
  33. 296.
    Colla E., Taylor D. V., Tagantsev A. K., Setter N., Appl. Phys. Lett. 72, 2478 (1998);CrossRefGoogle Scholar
  34. 296a.
    Colla E. L., Hong S., Taylor D. V., Tagantsev A. K., and Setter N., Appl. Phys. Lett. 72, 2763 (1998);CrossRefGoogle Scholar
  35. 296b.
    Colla E. L., et al., Microelec. Eng. 29, 145 (1995)CrossRefGoogle Scholar
  36. 297.
    Moritomo A., Yamanaka Y., and Shimizu T., Jpn. J. Appl. Phys. 34, 4108 (1995);CrossRefGoogle Scholar
  37. 297a.
    Paton E., Brazter M., Mansour S., and Bernent A., Integ. Ferroelec. 18, 29 (1997)CrossRefGoogle Scholar
  38. 298.
    Tagantsev A. K., Landivar M., Colla E., and Setter N., J. Appl. Phys. 78, 2623 (1995)CrossRefGoogle Scholar
  39. 299.
    Larsen P. K., Dormans G. J. M., Taylor D. J., and van Veldhoven P. J., J. Appl. Phys. 76, 2405 (1994)CrossRefGoogle Scholar
  40. 300.
    Fouskova A., J. Phys. Soc. Jpn. 27, 1699 (1969)CrossRefGoogle Scholar
  41. 301.
    Majunder S. B., Mohapatra Y. N., and Agrawal D. C., Appl. Phys. Lett. 70, 138 (1997);CrossRefGoogle Scholar
  42. 301a.
    Taylor D. V., Damjanovic D., Colla E., and Setter N., Ferroelectrics 225, 91 (1999)CrossRefGoogle Scholar
  43. 302.
    Du X. and I-Wei Chen, J. Appl. Phys. 83, 7789 (1998)CrossRefGoogle Scholar
  44. 303.
    Grenier J. C., Durier J., Pouchard M., and Hagenmuller P., Mat. Res. Bull. 11, 1219 (1976)CrossRefGoogle Scholar
  45. 304.
    Grenier J. C., Schiffmacher G., Caro P., Pouchard M., and Hagenmuller P., J. Sol. St. Chem. 20, 365 (1977)CrossRefGoogle Scholar
  46. 305.
    Grenier J. C., Pouchard M., and Hagenmuller P., Structure and Bonding 47, 1 (1981)CrossRefGoogle Scholar
  47. 306.
    Beccero A. I., McCammon C., Lagenhorst F., Seifert F., and Angel R., Phase Transitions 69, 133 (1999)CrossRefGoogle Scholar
  48. 307.
    Khachaturyan A. G., Theory of Structural Transformations in Solids (Wiley, New York, 1983), pp.511–523Google Scholar
  49. 308.
    Arlt G. and Neumann H., Ferroelectrics 87, 109 (1988);CrossRefGoogle Scholar
  50. 308a.
    Arlt G. and Roebels U., Integ. Ferroelec. 3, 343 (1993);CrossRefGoogle Scholar
  51. 308a.
    Roebels U., Calderwood J. H., and Arlt G., J. Appl. Phys. 77, 4002 (1995)CrossRefGoogle Scholar
  52. 309.
    Brennan C., Integ. Ferroelec. 8, 93 (1995);CrossRefGoogle Scholar
  53. 309a.
    Brennan C., Integ. Ferroelec. 8, 335 (1995)CrossRefGoogle Scholar
  54. 310.
    Yoo I. K. and Desu S. B., Phys. Stat. Sol. A133, 565 (1992)CrossRefGoogle Scholar
  55. 311.
    Dawber M. and Scott J. F., Appl. Phys. Lett. (in press, 1999)Google Scholar
  56. 312.
    Colla E. L., Taylor D. V., Tagantsev A. K., and Setter N., Appl. Phys. Lett. 72, 2478 (1998)CrossRefGoogle Scholar
  57. 313.
    Paton E., Brazier M., Mansour S., and Bement A., Integ. Ferroelec. 18, 29 (1997)CrossRefGoogle Scholar
  58. 314.
    Mihara T., Watanabe H., and Paz de Araujo C. A., Jpn. J. Appl. Phys. 33, 3996 (1994)CrossRefGoogle Scholar
  59. 315.
    Zhang G. B. and Smyth D. M., Sol. St. Ionics 82, 161 (1995)CrossRefGoogle Scholar
  60. 316.
    Scott J. F., Azuma M., Fujii E., Otsuki T., Kano G., Scott M. C., Paz de Araujo C. A., McMillan L. D., and Roberts T., Proc. ISAF, Greenville, SC; IEEE (catalog 92CH3080–9), eds. Liu M. et al., (IEEE, New York, 1992), pp.356–9Google Scholar
  61. 317.
    Stolichnov I., Tagantsev A. K., Colla E. L., and Setter N., Appl. Phys. Lett. 73, (1998)Google Scholar
  62. 318.
    Steinsvik S., Bugge R., Gjonnes J., Tafto J., and Nordby T., J. Phys. Chem. Sol. 58, 969 (1997)CrossRefGoogle Scholar
  63. 319.
    Wang Y. G., Steinsvik S., Haier R., and Nordby T., J. Mater. Sci. Lett. 14, 1027 (1995)CrossRefGoogle Scholar
  64. 320.
    Sutija D., Nordby T., Osborg P. A., and Kofstad P., Electrochem. Soc. Proc. 93–4, 552 (1993)Google Scholar
  65. 321.
    Eaton S., cited by Scott J. F., Ferroelectrics Rev. 1, 1 (1998)Google Scholar
  66. 322.
    Guettler B., Bismayer U., Groves P., and Salje E., Semicond. Sci. Technol. 10, 245 (1995)CrossRefGoogle Scholar
  67. 323.
    Paz de Araujo C. A., Cuchiaro J. D., McMillan L. D., Scott M. C., and Scott J. F., Nature 374, 627 (1995)CrossRefGoogle Scholar
  68. 324.
    Uskov M. P. and Khachaturyan A. G., Soy. Phys. Crystall. 13, 910 (1969)Google Scholar
  69. 325.
    van Landuyt J., Gevers R., and Amelinckx S., Phys. Stat. Sol. 13, 467 (1966)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations