Advertisement

Switching Kinetics

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

In principle when a large positive electric field is applied to a ferroelectric material that is in a multidomain state with most domains antiparallel to the applied field (a negative polarization state) the negative domains could all reorient simultaneously and independently. In fact, within Landau theory [250] one can calculate exactly what coercive field would be required in this case. However, the numerical result is typically approximately 1000 times larger than the coercive field observed experimentally. This shows that in practically all cases it is energetically cheaper to switch not by simultaneous polarization within a domain but rather by moving the domain walls. With one exception — the switching of ultrathin 0.9 nm films of polyvinylidenetetrafluoro-ethylene copolymer Langmuir—Blodgett films [251] , which appears to be true Landau theory simultaneous polarization flipping — all ferroelectrics at achievable field strengths E appear to switch by moving domain walls.

Keywords

Domain Wall Switching Time Coercive Field Ferroelectric Film Nucleation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 250.
    Landau L. D., Phys. Z. Sowjetunion 11, 26 (1937)Google Scholar
  2. 251.
    Bune A. V., Fridkin V. M., Ducharme S., et al., Nature 391, 874 (1998)CrossRefGoogle Scholar
  3. 252.
    Kay H. F. and Dunn J. W., Phil. Mag. 7, 2027 (1962)CrossRefGoogle Scholar
  4. 253.
    Scott J. F. et al., Proc. ISAF (IEEE, New York, 1986) p.569Google Scholar
  5. 254.
    Scott J. F., Ferroelectrics Rev. 1, 1 (1998)CrossRefGoogle Scholar
  6. 255.
    Bellur K. R., Al-Shareef H. N., and Rou S. H., Proc. ISAF (IEEE, New York, 1992) p.448Google Scholar
  7. 256.
    Sakashita Y., Ono T., Segawa H, Tominaga K., and Okada M., J. Appl. Phys. 73, 7857 (1993)CrossRefGoogle Scholar
  8. 257.
    Shur V., et al., Integ. Ferroelec. 2, 51 (1992) and private communication cited in [254]CrossRefGoogle Scholar
  9. 258.
    Janovec V., Phys. Lett. 99A, 549 (1983)Google Scholar
  10. 259.
    Democritov S. O., Kreines N. M., et al., JETP Lett. 48, 294 (1988)Google Scholar
  11. 260.
    Seul M. and Andelman D., Science 267, 476 (1995)CrossRefGoogle Scholar
  12. 261.
    Muratov C. B. and Osipov V., Phys. Rev. E53, 3101 (1996)Google Scholar
  13. 262.
    Stadler H. L. and Zachminidis P. J., J. Appl. Phys. 29, 1285 (1958);Google Scholar
  14. 262a.
    Stadler H. L. and Zachminidis P. J., J. Appl. Phys. 33, 3487 (1962);CrossRefGoogle Scholar
  15. 262b.
    Stadler H. L. and Zachminidis P. J., J. Appl. Phys. 34, 3255 (1963)CrossRefGoogle Scholar
  16. 263.
    Duiker H. M. et al., J. Appl. Phys. 68, 5783 (1990)CrossRefGoogle Scholar
  17. 264.
    Ishibashi Y., Integ. Ferroelec. 3, 351 (1993);CrossRefGoogle Scholar
  18. 264a.
    Ishibashi Y., Jpn. J. Appl. Phys. 24, Suppl. 3, 126 (1986)Google Scholar
  19. 265.
    Dennis J., Integ. Ferroelec. 3, 1 (1993)CrossRefGoogle Scholar
  20. 266.
    Scott J. F. et al., J. Appl. Phys. 64, 787 (1988)CrossRefGoogle Scholar
  21. 267.
    Orihara H. and Ishibashi Y., J. Phys. Soc. Jpn. 61, 1919 (1992);CrossRefGoogle Scholar
  22. 267a.
    Orihara H. and Ishibashi Y., J. Phys. Soc. Jpn. 61, 4650 (1992)CrossRefGoogle Scholar
  23. 268.
    Lines M. and Glass A. M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)Google Scholar
  24. 269.
    Dalton N. W., Jacobs J. T. and Silverman B. D., Phys. Rev. 133A, 1034 (1964)CrossRefGoogle Scholar
  25. 270.
    Avrami M., J. Chem. Phys. 7, 1103 (1940);CrossRefGoogle Scholar
  26. 270a.
    Avrami M., J. Chem. Phys. 8, 212 (1940);CrossRefGoogle Scholar
  27. 270b.
    Avrami M., J. Chem. Phys. 9, 177 (1941)CrossRefGoogle Scholar
  28. 271.
    Hase T. and Shiosaki T., Jpn. J. Appl. Phys. 30, 2159 (1991)CrossRefGoogle Scholar
  29. 272.
    Sekimoto K., Physica A135, 328 (1986);CrossRefGoogle Scholar
  30. 272a.
    Sekimoto K., Physica A137, 96 (1986)CrossRefGoogle Scholar
  31. 273.
    Ishibashi Y., Integ. Ferroelec. 9, 57 (1995)CrossRefGoogle Scholar
  32. 274.
    Franke K., Besold J., Haessler W., and Seegebarth C., Surf. Sci. 302, L283 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations