Advertisement

Leakage Currents

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

It is important to understand the nature of leakage currents in ferroelectric memories in order to control heating of the memory and thermal breakdown. In general, ferroelectric film capacitors on metal electrodes provide very complicated structures in which electrons, holes, and ions all contribute to conduction, and where a variety of mechanisms — including surface-limited processes such as thermionic Schottky currents and quantum mechanical Fowler—Nordheim currents, as well as bulk-limited processes such as Poole— Frenkel and Space-Charge-Limited Currents (SCLC) are all important. Typically these processes are all present at the same time, and unfortunately they are not additive; rather, they result in nonlinear integral equations for total leakage current J(V). In this book we will use the J to denote real leakage current and the letter i to designate displacement current.

Keywords

Leakage Current Ferroelectric Thin Film Ferroelectric Film Schottky Emission Ferroelectric Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 131.
    Sze S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981) p.252Google Scholar
  2. 132.
    Scott J. F., Azuma M., et al., Integ. Ferroelec. 4, 61 (1994)CrossRefGoogle Scholar
  3. 133.
    Lee J.-J., Alluri P. and Dey S. K., Appl. Phys. Lett. 65, (1994)Google Scholar
  4. 134.
    Dietz G. W., PhD thesis, Tech. Univ. Aachen (1996)Google Scholar
  5. 135.
    Joshi V., DaCruz C. P., Cuchiaro J. D., Araujo C. A., and Zuleeg R., Integ. Ferroelec. 14, 133 (1997);CrossRefGoogle Scholar
  6. 135a.
    Diemer G., Physica 26, 889 (1960);CrossRefGoogle Scholar
  7. 135b.
    Waser R. and Smyth D. M., Ferroelectric Thin Films, eds. Paz de Araujo C. A. et al. (Gordon & Breach, New York, 1996), p.47Google Scholar
  8. 136.
    Smyth D. M., Prog. Sol. St. Chem. 15, 145 (1984);CrossRefGoogle Scholar
  9. 136a.
    Chan N.-H., Sharma R. K., and Smyth D. M., J. Am. Ceram. Soc. 64, 556 (1981);CrossRefGoogle Scholar
  10. 136b.
    Chan N.-H., Sharma R. K., and Smyth D. M., J. Electrochem. Soc. 123, 1584 (1976)CrossRefGoogle Scholar
  11. 137.
    Wouters D. J., Wilems G. J., and Maes H. E., Microelectron. Eng. 29, 249 (1995); this erroneous band structure was subsequently used byCrossRefGoogle Scholar
  12. 137a.
    Stolichnov I. and Tagantsev A. K., J. Appl. Phys. 84, 3216 (1998);CrossRefGoogle Scholar
  13. 137b.
    Dixit A. V., Rajopadhye N. R., and Bhoraskar S. V., J. Mater. Sci. 21, 2798 (1986)CrossRefGoogle Scholar
  14. 138.
    Scott J. F., Ferroelec. 183, 51 (1996); see also the earlier work byCrossRefGoogle Scholar
  15. 138a.
    Merz W. and Anderson J. R., Bell Labs. Record 33, 335 (1955) and byGoogle Scholar
  16. 138b.
    Campbell D. S., Phil. Mag. 79, 1157 (1962) . For Ti3+ studies seeCrossRefGoogle Scholar
  17. 138c.
    Scott J. F. and Ross F. M., Ferroelec. 201, 43 (1997) andCrossRefGoogle Scholar
  18. 138d.
    Bardi U., Tamura K., Owari M., and Nihei Y., Appl. Surf. Sci. 2, 352 (1988)CrossRefGoogle Scholar
  19. 139.
    Mark P. and Hartman T. E., J. Appl. Phys. 39, 2163 (1968);CrossRefGoogle Scholar
  20. 139a.
    Li P. and Lu T. M., Phys. Rev. B43, 14261 (1991)Google Scholar
  21. 140.
    Robblee L. S., US Pat. No. 4,677,989 (1987) and 4,717,581 (1987)Google Scholar
  22. 141.
    Robblee L. S., et al., MRS Proc. 55, 303 (1986)CrossRefGoogle Scholar
  23. 142.
    Robblee L. S. and Cogan S. F., Metals for Medical Electrodes, Enc. Mat. Sci. & Eng., Suppl. Vol. 1, ed. R. W. Cahn (Pergamon, Oxford, 1986) p.276Google Scholar
  24. 143.
    Williams D. F., Ann. Rev. Mat. Sci. 6, 237 (1976)CrossRefGoogle Scholar
  25. 144.
    Robblee L. S. and Rose T. L., Neural Prostheses: Fundamental Studies, ed. W. Agnew and D. McCreery (Prentice-Hall, New York, 1989) p.117Google Scholar
  26. 145.
    Uhlig H. H. and Reeve R. W., Corrosion and Corrosion Control (Wiley, New York, 1985)Google Scholar
  27. 146.
    Brummer S. B., Robblee L. S., and Hambrecht F. T., Ann. NY Acad. Sci. 405, 159 (1983)CrossRefGoogle Scholar
  28. 147.
    Brummer S. B. and Turner M. J., IEEE Trans. Biomed. Eng. 24, 59 (1977)CrossRefGoogle Scholar
  29. 148.
    Kingon A., private communication; note that the oxidation of Pt in applied electric fields is very different from that at V 0, which occurs only at elevated temperatures: Smithells Metals Reference Book, 6th ed., Brandes E. A., ed. (Butterworths, London, 1983) Chap.13 Diffusion in MetalsGoogle Scholar
  30. 149.
    Noguchi T. et al., FMA-13, Kyoto (1996), pp.27 and 78;Google Scholar
  31. 149a.
    Scott J. F., Ferroelec. Rev. 1, 1 (1998)CrossRefGoogle Scholar
  32. 150.
    Smith R. W. and Rose A., Phys. Rev. 97, 1531 (1955);CrossRefGoogle Scholar
  33. 150a.
    Ruppel W., Helv. Phys. Acta 31, 311 (1958)Google Scholar
  34. 151.
    Hamann C., Burghardt H., and Frauenheim T., Electrical Conduction Mechanisms in Solids (VEB Publishing Co., Berlin, 1988);Google Scholar
  35. 151a.
    Lampert M. A., Many A., and Mark P.. Phvs. Rev. 135. A1444 (1964)CrossRefGoogle Scholar
  36. 152.
    Scott J. F., Melnick B. M. et al., Integ. Ferroelec. 4, 85 (1994);CrossRefGoogle Scholar
  37. 152a.
    Scott J. F., Melnick B. M. et al., Integ. Ferroelec. 3, 225 (1993)CrossRefGoogle Scholar
  38. 153.
    Melnick B. M., Scott J. F., Araujo C. A., and McMillan L. D., Ferroelec. 135, 163 (1992)CrossRefGoogle Scholar
  39. 154.
    Peng C. J., Hu H., Krupanidhi S. B. Appl. Phys. Lett. 63, 1038 (1993)CrossRefGoogle Scholar
  40. 155.
    Mayer J. W., Baron R., and Marsh O. J., Phys. Rev. 137, A286 (1965)CrossRefGoogle Scholar
  41. 156.
    Rose A., Phys. Rev. 97, 1538 (1955)CrossRefGoogle Scholar
  42. 157.
    Lampert M. A. and Mark P., Charge Injection in Solids (Academic Press, New York, 1970) p.73, p.276Google Scholar
  43. 158.
    Scott J. F., Watanabe K., and Hartmann A. J., Integ. Ferroelec. 21, 241 (1998)CrossRefGoogle Scholar
  44. 159.
    Lampert M. A. and Mark P., Charge Injection in Solids (Academic Press, New York, 1970) p.261Google Scholar
  45. 160.
    Waser R., Science and Technology of Electroceramic Thin Films (Kluwer, Dordrecht, 1995) p.223CrossRefGoogle Scholar
  46. 161.
    Brennan C., Integ. Ferroelec. 8, 335 (1995)CrossRefGoogle Scholar
  47. 162.
    Brennan C., Integ. Ferroelec. 8, 93 (1995)CrossRefGoogle Scholar
  48. 163.
    Scott J. F., et al., Integ. Ferroelec. 4, 85 (1994)CrossRefGoogle Scholar
  49. 164.
    Roy D., Peng C. J., and Krupanidhi S. B., Appl. Phys. Lett. 60, 2478 (1992)CrossRefGoogle Scholar
  50. 165.
    Many A. and Raklavy G., Phys. Rev. 126, 1980 (1962)Google Scholar
  51. 166.
    Zafar S. et al., Appl. Phys. Lett. 73, 175 (1998)CrossRefGoogle Scholar
  52. 167.
    Chen H. D. et al., Integ. Ferroelec. 15, 89 (1997);CrossRefGoogle Scholar
  53. 167a.
    Kroger F. A., Diemer G., and Klasens H. A., Phys. Rev. 103, 279 (1956)CrossRefGoogle Scholar
  54. 168.
    Tredgold R. H., Space Charge Conduction in Solids (Elsevier, Amsterdam, 1966); reviews of double injection are given byGoogle Scholar
  55. 168a.
    Ivey H. F., J. Electrochem. Soc. 180, 590 (1961) and byCrossRefGoogle Scholar
  56. 168b.
    Henisch H. K., Electroluminescence (Macmillan, New York, 1962)Google Scholar
  57. 169.
    Rose A., Phys. Rev. 97, 1537 (1955)Google Scholar
  58. 170.
    Wu Z. and Sayer M., Proc. ISAF (IEEE, New York, 1992) p.244Google Scholar
  59. 171.
    Waser R., Baiatu T. and Hardtl K.-H., J. Am. Ceram. Soc. 73, 1645 (1990);CrossRefGoogle Scholar
  60. 171a.
    Waser R., Baiatu T. and Hardtl K.-H., J. Am. Ceram. Soc. 73, 1654 (1990);CrossRefGoogle Scholar
  61. 171b.
    Waser R., Baiatu T. and Hardtl K.-H., J. Am. Ceram. Soc. 73, 1663 (1990)CrossRefGoogle Scholar
  62. 172.
    Mihara T., et al., Integ. Ferroelec. 1, 269 (1992);CrossRefGoogle Scholar
  63. 172a.
    Mihara T., et al., Nikkei Electronics 581, 94 (1993)Google Scholar
  64. 173.
    Wang D. Y. and Umeya K., J. Am. Ceram. Soc. 73, 1574 (1990)CrossRefGoogle Scholar
  65. 174.
    Dey S. K. and Zuleeg R., Ferroelec. 109, 1643 (1990);Google Scholar
  66. 174a.
    Dey S. K., Alluri P., and Lee J.-J ., Integ. Ferroelec. 7, 341 (1993)CrossRefGoogle Scholar
  67. 175.
    Klimov V. V., Ferroelec. 17, 465 (1978)Google Scholar
  68. 176.
    Jo W. et al., MRS Proc. 361, 33 (1994)CrossRefGoogle Scholar
  69. 177.
    Abe K., Komatsu S., Yanase N., Sano K., and Kawakubo T., Jpn. J. Appl. Phys. 36, 5846 (1997)CrossRefGoogle Scholar
  70. 178.
    Abe K. et al., IEICE 81, 505 (1998)Google Scholar
  71. 179.
    Kreyina G. S., Selivanov L. N., and Shumskaia T. I., Radio Eng. Elec. Phys. 5, 8 (1960);Google Scholar
  72. 179a.
    Kreyina G. S., Selivanov L. N., and Shumskaia T. I., Radio Eng. Elec. Phys. 5, 219 (1960);Google Scholar
  73. 179b.
    Kreyina G. S., Selivanov L. N., and Shumskaia T. I., Radio Eng. Elec. Phys. 7, 166 (1962);Google Scholar
  74. 179c.
    Kreyina G. S., Selivanov L. N., and Shumskaia T. I., Radio Eng. Elec. Phys. 7, 1949 (1962)Google Scholar
  75. 180.
    Hickmott T. W., J. Appl. Phys. 33, 2669 (1962);CrossRefGoogle Scholar
  76. 180a.
    Hickmott T. W., J. Appl. Phys. 34, 1569 (1963);CrossRefGoogle Scholar
  77. 180c.
    Hickmott T. W., J. Appl. Phys. 35, 2118 (1964);CrossRefGoogle Scholar
  78. 180d.
    Hickmott T. W., J. Appl. Phys. 35, 1885 (1965)CrossRefGoogle Scholar
  79. 181.
    Lewowski T., Sendecki S., and Sujak B., Acta Phys. Polon. 28 (1965)Google Scholar
  80. 182.
    Uzan R., Roger A., and Cachard A., Vide 137, 38 (1967)Google Scholar
  81. 183.
    Simmons J. G. and Verderber R. R., Proc. Roy. Soc. (London) 301, 77 (1967);CrossRefGoogle Scholar
  82. 183a.
    Simmons J. G. and Verderber R. R., Radio Elec. Eng. 34, 81 (1966)CrossRefGoogle Scholar
  83. 184.
    Verderber R. R., Simmons J. G., and Eales B., Phil. Mag. 16, 1049 (1967)CrossRefGoogle Scholar
  84. 185.
    Klein N. and Levanon N., J. Appl. Phys. 38, 3721 (1967);CrossRefGoogle Scholar
  85. 185a.
    Pratt R. G. and Ridley B. K., Proc. Phys. Soc. (London) 81, 996 (1963);CrossRefGoogle Scholar
  86. 185b.
    Pratt R. G. and Ridley B. K., Proc. Phys. Soc. (London) 85, 293 (1965);CrossRefGoogle Scholar
  87. 185c.
    Pratt R. G. and Ridley B. K., J. Phys. Chem. Sol. 26, 11 (1965);CrossRefGoogle Scholar
  88. 185d.
    Pratt R. G. and Ridley B. K., J. Phys. Chem. Sol. 26, 21 (1965);CrossRefGoogle Scholar
  89. 185e.
    Pratt R. G. and Ridley B. K., Phys. Lett. 4, 300 (1963)CrossRefGoogle Scholar
  90. 186.
    Kostic P., Milosevic O., Uskokovic D., and Ristic M. M., Physica B150, 175 (1988)Google Scholar
  91. 187.
    Ridley B. K., Proc. Phys. Soc. (London) 82, 954 (1963);CrossRefGoogle Scholar
  92. 187a.
    Barnett A. M. and Milnes A. G., J. Appl. Phys. 37, 4215 (1966)CrossRefGoogle Scholar
  93. 188.
    Nicoll F. M., RCA Rev. 19, 17 (1958);Google Scholar
  94. 188a.
    Bube R. H., Physics and Chemistry of II-VI Semiconductors, eds. Aven M. and Prener J. S. (North-Holland, Amsterdam, 1967) p.657Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations