Skip to main content

Leakage Currents

  • Chapter
Ferroelectric Memories

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 3))

Abstract

It is important to understand the nature of leakage currents in ferroelectric memories in order to control heating of the memory and thermal breakdown. In general, ferroelectric film capacitors on metal electrodes provide very complicated structures in which electrons, holes, and ions all contribute to conduction, and where a variety of mechanisms — including surface-limited processes such as thermionic Schottky currents and quantum mechanical Fowler—Nordheim currents, as well as bulk-limited processes such as Poole— Frenkel and Space-Charge-Limited Currents (SCLC) are all important. Typically these processes are all present at the same time, and unfortunately they are not additive; rather, they result in nonlinear integral equations for total leakage current J(V). In this book we will use the J to denote real leakage current and the letter i to designate displacement current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sze S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981) p.252

    Google Scholar 

  2. Scott J. F., Azuma M., et al., Integ. Ferroelec. 4, 61 (1994)

    Article  CAS  Google Scholar 

  3. Lee J.-J., Alluri P. and Dey S. K., Appl. Phys. Lett. 65, (1994)

    Google Scholar 

  4. Dietz G. W., PhD thesis, Tech. Univ. Aachen (1996)

    Google Scholar 

  5. Joshi V., DaCruz C. P., Cuchiaro J. D., Araujo C. A., and Zuleeg R., Integ. Ferroelec. 14, 133 (1997);

    Article  CAS  Google Scholar 

  6. Diemer G., Physica 26, 889 (1960);

    Article  CAS  Google Scholar 

  7. Waser R. and Smyth D. M., Ferroelectric Thin Films, eds. Paz de Araujo C. A. et al. (Gordon & Breach, New York, 1996), p.47

    Google Scholar 

  8. Smyth D. M., Prog. Sol. St. Chem. 15, 145 (1984);

    Article  CAS  Google Scholar 

  9. Chan N.-H., Sharma R. K., and Smyth D. M., J. Am. Ceram. Soc. 64, 556 (1981);

    Article  CAS  Google Scholar 

  10. Chan N.-H., Sharma R. K., and Smyth D. M., J. Electrochem. Soc. 123, 1584 (1976)

    Article  CAS  Google Scholar 

  11. Wouters D. J., Wilems G. J., and Maes H. E., Microelectron. Eng. 29, 249 (1995); this erroneous band structure was subsequently used by

    Article  CAS  Google Scholar 

  12. Stolichnov I. and Tagantsev A. K., J. Appl. Phys. 84, 3216 (1998);

    Article  CAS  Google Scholar 

  13. Dixit A. V., Rajopadhye N. R., and Bhoraskar S. V., J. Mater. Sci. 21, 2798 (1986)

    Article  CAS  Google Scholar 

  14. Scott J. F., Ferroelec. 183, 51 (1996); see also the earlier work by

    Article  CAS  Google Scholar 

  15. Merz W. and Anderson J. R., Bell Labs. Record 33, 335 (1955) and by

    Google Scholar 

  16. Campbell D. S., Phil. Mag. 79, 1157 (1962) . For Ti3+ studies see

    Article  Google Scholar 

  17. Scott J. F. and Ross F. M., Ferroelec. 201, 43 (1997) and

    Article  CAS  Google Scholar 

  18. Bardi U., Tamura K., Owari M., and Nihei Y., Appl. Surf. Sci. 2, 352 (1988)

    Article  Google Scholar 

  19. Mark P. and Hartman T. E., J. Appl. Phys. 39, 2163 (1968);

    Article  Google Scholar 

  20. Li P. and Lu T. M., Phys. Rev. B43, 14261 (1991)

    Google Scholar 

  21. Robblee L. S., US Pat. No. 4,677,989 (1987) and 4,717,581 (1987)

    Google Scholar 

  22. Robblee L. S., et al., MRS Proc. 55, 303 (1986)

    Article  CAS  Google Scholar 

  23. Robblee L. S. and Cogan S. F., Metals for Medical Electrodes, Enc. Mat. Sci. & Eng., Suppl. Vol. 1, ed. R. W. Cahn (Pergamon, Oxford, 1986) p.276

    Google Scholar 

  24. Williams D. F., Ann. Rev. Mat. Sci. 6, 237 (1976)

    Article  CAS  Google Scholar 

  25. Robblee L. S. and Rose T. L., Neural Prostheses: Fundamental Studies, ed. W. Agnew and D. McCreery (Prentice-Hall, New York, 1989) p.117

    Google Scholar 

  26. Uhlig H. H. and Reeve R. W., Corrosion and Corrosion Control (Wiley, New York, 1985)

    Google Scholar 

  27. Brummer S. B., Robblee L. S., and Hambrecht F. T., Ann. NY Acad. Sci. 405, 159 (1983)

    Article  CAS  Google Scholar 

  28. Brummer S. B. and Turner M. J., IEEE Trans. Biomed. Eng. 24, 59 (1977)

    Article  CAS  Google Scholar 

  29. Kingon A., private communication; note that the oxidation of Pt in applied electric fields is very different from that at V 0, which occurs only at elevated temperatures: Smithells Metals Reference Book, 6th ed., Brandes E. A., ed. (Butterworths, London, 1983) Chap.13 Diffusion in Metals

    Google Scholar 

  30. Noguchi T. et al., FMA-13, Kyoto (1996), pp.27 and 78;

    Google Scholar 

  31. Scott J. F., Ferroelec. Rev. 1, 1 (1998)

    Article  CAS  Google Scholar 

  32. Smith R. W. and Rose A., Phys. Rev. 97, 1531 (1955);

    Article  CAS  Google Scholar 

  33. Ruppel W., Helv. Phys. Acta 31, 311 (1958)

    CAS  Google Scholar 

  34. Hamann C., Burghardt H., and Frauenheim T., Electrical Conduction Mechanisms in Solids (VEB Publishing Co., Berlin, 1988);

    Google Scholar 

  35. Lampert M. A., Many A., and Mark P.. Phvs. Rev. 135. A1444 (1964)

    Article  CAS  Google Scholar 

  36. Scott J. F., Melnick B. M. et al., Integ. Ferroelec. 4, 85 (1994);

    Article  CAS  Google Scholar 

  37. Scott J. F., Melnick B. M. et al., Integ. Ferroelec. 3, 225 (1993)

    Article  CAS  Google Scholar 

  38. Melnick B. M., Scott J. F., Araujo C. A., and McMillan L. D., Ferroelec. 135, 163 (1992)

    Article  CAS  Google Scholar 

  39. Peng C. J., Hu H., Krupanidhi S. B. Appl. Phys. Lett. 63, 1038 (1993)

    Article  CAS  Google Scholar 

  40. Mayer J. W., Baron R., and Marsh O. J., Phys. Rev. 137, A286 (1965)

    Article  Google Scholar 

  41. Rose A., Phys. Rev. 97, 1538 (1955)

    Article  CAS  Google Scholar 

  42. Lampert M. A. and Mark P., Charge Injection in Solids (Academic Press, New York, 1970) p.73, p.276

    Google Scholar 

  43. Scott J. F., Watanabe K., and Hartmann A. J., Integ. Ferroelec. 21, 241 (1998)

    Article  Google Scholar 

  44. Lampert M. A. and Mark P., Charge Injection in Solids (Academic Press, New York, 1970) p.261

    Google Scholar 

  45. Waser R., Science and Technology of Electroceramic Thin Films (Kluwer, Dordrecht, 1995) p.223

    Book  Google Scholar 

  46. Brennan C., Integ. Ferroelec. 8, 335 (1995)

    Article  Google Scholar 

  47. Brennan C., Integ. Ferroelec. 8, 93 (1995)

    Article  Google Scholar 

  48. Scott J. F., et al., Integ. Ferroelec. 4, 85 (1994)

    Article  CAS  Google Scholar 

  49. Roy D., Peng C. J., and Krupanidhi S. B., Appl. Phys. Lett. 60, 2478 (1992)

    Article  CAS  Google Scholar 

  50. Many A. and Raklavy G., Phys. Rev. 126, 1980 (1962)

    Google Scholar 

  51. Zafar S. et al., Appl. Phys. Lett. 73, 175 (1998)

    Article  CAS  Google Scholar 

  52. Chen H. D. et al., Integ. Ferroelec. 15, 89 (1997);

    Article  CAS  Google Scholar 

  53. Kroger F. A., Diemer G., and Klasens H. A., Phys. Rev. 103, 279 (1956)

    Article  CAS  Google Scholar 

  54. Tredgold R. H., Space Charge Conduction in Solids (Elsevier, Amsterdam, 1966); reviews of double injection are given by

    Google Scholar 

  55. Ivey H. F., J. Electrochem. Soc. 180, 590 (1961) and by

    Article  Google Scholar 

  56. Henisch H. K., Electroluminescence (Macmillan, New York, 1962)

    Google Scholar 

  57. Rose A., Phys. Rev. 97, 1537 (1955)

    Google Scholar 

  58. Wu Z. and Sayer M., Proc. ISAF (IEEE, New York, 1992) p.244

    Google Scholar 

  59. Waser R., Baiatu T. and Hardtl K.-H., J. Am. Ceram. Soc. 73, 1645 (1990);

    Article  CAS  Google Scholar 

  60. Waser R., Baiatu T. and Hardtl K.-H., J. Am. Ceram. Soc. 73, 1654 (1990);

    Article  CAS  Google Scholar 

  61. Waser R., Baiatu T. and Hardtl K.-H., J. Am. Ceram. Soc. 73, 1663 (1990)

    Article  Google Scholar 

  62. Mihara T., et al., Integ. Ferroelec. 1, 269 (1992);

    Article  CAS  Google Scholar 

  63. Mihara T., et al., Nikkei Electronics 581, 94 (1993)

    Google Scholar 

  64. Wang D. Y. and Umeya K., J. Am. Ceram. Soc. 73, 1574 (1990)

    Article  CAS  Google Scholar 

  65. Dey S. K. and Zuleeg R., Ferroelec. 109, 1643 (1990);

    Google Scholar 

  66. Dey S. K., Alluri P., and Lee J.-J ., Integ. Ferroelec. 7, 341 (1993)

    Article  Google Scholar 

  67. Klimov V. V., Ferroelec. 17, 465 (1978)

    Google Scholar 

  68. Jo W. et al., MRS Proc. 361, 33 (1994)

    Article  Google Scholar 

  69. Abe K., Komatsu S., Yanase N., Sano K., and Kawakubo T., Jpn. J. Appl. Phys. 36, 5846 (1997)

    Article  CAS  Google Scholar 

  70. Abe K. et al., IEICE 81, 505 (1998)

    Google Scholar 

  71. Kreyina G. S., Selivanov L. N., and Shumskaia T. I., Radio Eng. Elec. Phys. 5, 8 (1960);

    Google Scholar 

  72. Kreyina G. S., Selivanov L. N., and Shumskaia T. I., Radio Eng. Elec. Phys. 5, 219 (1960);

    Google Scholar 

  73. Kreyina G. S., Selivanov L. N., and Shumskaia T. I., Radio Eng. Elec. Phys. 7, 166 (1962);

    Google Scholar 

  74. Kreyina G. S., Selivanov L. N., and Shumskaia T. I., Radio Eng. Elec. Phys. 7, 1949 (1962)

    Google Scholar 

  75. Hickmott T. W., J. Appl. Phys. 33, 2669 (1962);

    Article  CAS  Google Scholar 

  76. Hickmott T. W., J. Appl. Phys. 34, 1569 (1963);

    Article  CAS  Google Scholar 

  77. Hickmott T. W., J. Appl. Phys. 35, 2118 (1964);

    Article  CAS  Google Scholar 

  78. Hickmott T. W., J. Appl. Phys. 35, 1885 (1965)

    Article  Google Scholar 

  79. Lewowski T., Sendecki S., and Sujak B., Acta Phys. Polon. 28 (1965)

    Google Scholar 

  80. Uzan R., Roger A., and Cachard A., Vide 137, 38 (1967)

    Google Scholar 

  81. Simmons J. G. and Verderber R. R., Proc. Roy. Soc. (London) 301, 77 (1967);

    Article  CAS  Google Scholar 

  82. Simmons J. G. and Verderber R. R., Radio Elec. Eng. 34, 81 (1966)

    Article  Google Scholar 

  83. Verderber R. R., Simmons J. G., and Eales B., Phil. Mag. 16, 1049 (1967)

    Article  CAS  Google Scholar 

  84. Klein N. and Levanon N., J. Appl. Phys. 38, 3721 (1967);

    Article  CAS  Google Scholar 

  85. Pratt R. G. and Ridley B. K., Proc. Phys. Soc. (London) 81, 996 (1963);

    Article  CAS  Google Scholar 

  86. Pratt R. G. and Ridley B. K., Proc. Phys. Soc. (London) 85, 293 (1965);

    Article  CAS  Google Scholar 

  87. Pratt R. G. and Ridley B. K., J. Phys. Chem. Sol. 26, 11 (1965);

    Article  CAS  Google Scholar 

  88. Pratt R. G. and Ridley B. K., J. Phys. Chem. Sol. 26, 21 (1965);

    Article  Google Scholar 

  89. Pratt R. G. and Ridley B. K., Phys. Lett. 4, 300 (1963)

    Article  Google Scholar 

  90. Kostic P., Milosevic O., Uskokovic D., and Ristic M. M., Physica B150, 175 (1988)

    Google Scholar 

  91. Ridley B. K., Proc. Phys. Soc. (London) 82, 954 (1963);

    Article  CAS  Google Scholar 

  92. Barnett A. M. and Milnes A. G., J. Appl. Phys. 37, 4215 (1966)

    Article  CAS  Google Scholar 

  93. Nicoll F. M., RCA Rev. 19, 17 (1958);

    Google Scholar 

  94. Bube R. H., Physics and Chemistry of II-VI Semiconductors, eds. Aven M. and Prener J. S. (North-Holland, Amsterdam, 1967) p.657

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, J.F. (2000). Leakage Currents. In: Ferroelectric Memories. Springer Series in Advanced Microelectronics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04307-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04307-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08565-9

  • Online ISBN: 978-3-662-04307-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics