Skip to main content

Electrical Breakdown (DRAMs and NV-RAMs)

  • Chapter
Ferroelectric Memories

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 3))

Abstract

Many aspects of the design engineering, materials processing and selection, and applied physics (e.g., switching kinetics) are unrelated in ferroelectric applications to nonvolatile RAMs compared with DRAMs. In the ferroelectric NV-RAM the ferroelectric polarization contains the stored information whereas in a ferroelectric DRAM, the ferroelectric film is merely a highdielectric capacitor and can have P r = 0. However, some issues are the same, and this chapter deals with one of them, electrical breakdown, which is paramount for NV-RAMs, DRAMs, and other integrated ferroelectric devices such as bypass capacitors, which are not memories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Dwyer J. J., Theory of Dielectric Breakdown in Solids (Clarendon Press, Oxford, 1964);

    Google Scholar 

  2. Wolters D. R. and Zegers-van Duijnhoven A. T. A., J. Vac. Sci. Technol. A5, 1563 (1987);

    Article  CAS  Google Scholar 

  3. Coelho R., Physics of Dielectrics (Elsevier, Lausanne, 1979);

    Google Scholar 

  4. Waser R. and Smyth D. M., Ferroelectric Thin Films, eds. Paz de Araujo C. A., Scott J. F., and Taylor G. W. (Gordon & Breach, New York, 1996) p.47;

    Google Scholar 

  5. Williams R., Phys. Rev. 125, 850 (1962)

    Article  CAS  Google Scholar 

  6. No K., et al., MRS Proc. 433, 9 (1996);

    Article  CAS  Google Scholar 

  7. Seifert S., Loebmann P., and Sporn D., J. Phys. IV France 8, 61 (1998)

    Article  Google Scholar 

  8. Vlasenko N. A., Opt. i Spekt. 18, 260 (1965)

    Google Scholar 

  9. Goetzberger A., McDonald B., Haitz R. H., and Scarlett R. M., J. Appl. Phys. 34, 1591 (1980)

    Article  Google Scholar 

  10. Pearsall T. P., J. Appl. Phys. 34, 1591 (1980)

    Google Scholar 

  11. Waser R. and Klee M., Integ. Ferroelec. 2, 288 (1990)

    Google Scholar 

  12. Von Hippel A., J. Appl. Phvs. 8. 815 (1937)

    Article  Google Scholar 

  13. Von Hippel A., Ergeb. exakt Naturwiss. 14, 118 (1935)

    Google Scholar 

  14. Von Hippel A., Z. Phys. 98, 580 (1936)

    Article  Google Scholar 

  15. Dekker A. J., Phys. Rev. 94, 1179 (1954)

    Article  CAS  Google Scholar 

  16. Dakin T. W. and Berg D., Progress in Dielectrics, eds. J. B. Birks and J. Hart (Academic Press, New York, 1962) Vol. 4, p.165

    Google Scholar 

  17. Sharbaugh H. and Watson P. K., Progress in Dielectrics, eds. J. B. Birks and J. Hart (Academic Press, New York, 1962) Vol. 4, p.226

    Google Scholar 

  18. Scott J. F., Azuma M., et al., Integ. Ferroelec. 4 61 (1994)

    Article  CAS  Google Scholar 

  19. Nowotny J. and Sloma N., Surface and Near-Surface Chemistry of Oxide Ceramic Materials, eds. J. Nowotny and L. C. Dufour (Elsevier, Amsterdam, 1988)

    Google Scholar 

  20. de Boer J. H., Electron Emission and Absorption Phenomena (Cambridge University Press, London, 1935)

    Google Scholar 

  21. Zafar S., Hradsky B., et al., J. Appl. Phys. (1999 in press)

    Google Scholar 

  22. Scott J. F., Melnick B. M., McMillan L. D., and Paz de Araujo C. A., Integ. Ferroelec. 3, 225 (1993)

    Article  CAS  Google Scholar 

  23. Gerson R. and Marshall T. C., J. Appl. Phys. 30, 1650 (1959)

    Article  CAS  Google Scholar 

  24. Matsubara S. et al., MRS Proc. 200, 243 (1990)

    Article  CAS  Google Scholar 

  25. Matsubara S. et al., MRS Proc. 243, 281 (1992)

    Article  CAS  Google Scholar 

  26. Carrano J., et al., IEDM Conf. Proc. (IEEE, New York, 1989) p.225

    Google Scholar 

  27. Sudhama C. et al., MRS Proc. 200, 331 (1990)

    Article  CAS  Google Scholar 

  28. Arita K., Proc. ISAF, (IEEE; New York, 1996)

    Google Scholar 

  29. Scott J. F., Science and Technology of Electroceramic Thin Films, eds. O. Auciello and R. Waser, NATO ASI Series 284 (Kluwer, Dordrecht, 1995) p.249

    Chapter  Google Scholar 

  30. Scott J. F., Ross F. M., et al., MRS Bull. 21, 33 (1996);

    CAS  Google Scholar 

  31. Scott J. F., Ross F. M., et al., Ferroelectrics 201, 43 (1997)

    Article  CAS  Google Scholar 

  32. Feng Duan, private communication (1991)

    Google Scholar 

  33. Srolovitz D. J. and Scott J. F.. Phvs. Rev. B34. 1815 (1986)

    Google Scholar 

  34. Plumlee R., Sandia Laboratories Report SC-RR-67–730 (1967)

    Google Scholar 

  35. Bursill L., private communication (1996)

    Google Scholar 

  36. De Veirman A. E. M., et al. EMIF-1, Nijmegen (July 4, 1995);

    Google Scholar 

  37. De Veirman A. E. M., et al. Ferroelectrics 186, 51 (1996)

    Article  Google Scholar 

  38. Lipeles R. A., Morgan B. A., and Leung M. S., Integ. Ferroelec. 5, 197 (1994)

    Article  Google Scholar 

  39. Raleigh D. O., Fast-Ion Transport in Solids, ed. W. van Gool (North-Holland, Amsterdam, 1972) p.479

    Google Scholar 

  40. Duiker H. M., Ph.D. thesis, Univ. Colorado (1990)

    Google Scholar 

  41. Duiker H. M. and Beale P. D., Phys. Rev. B41, 490 (1990)

    Google Scholar 

  42. Duiker H. M. et al., J. Appl. Phys. 68, 5783 (1990)

    Article  CAS  Google Scholar 

  43. Freund F. et al., Le Vide: Science, Technique et Applications 275, Suppl. 538 (1995) [Proc. 2nd Int. Conf. Space Charge in Solid Dielectrics. , Antibes 19951

    Google Scholar 

  44. Scott J. F. et al., J. Appl. Phys. 64, 787 (1988)

    Article  CAS  Google Scholar 

  45. Eaton S., private communication (1992)

    Google Scholar 

  46. Seitz F., Phys. Rev. 76, 1328 (1949)

    Article  Google Scholar 

  47. Waser R. and Klee M., Integ. Ferroelec. 2. 288 (1992) Phys.

    Article  Google Scholar 

  48. Forlani F. and Minnaja N., Stat. Sol. 4, 311 (1964)

    Article  CAS  Google Scholar 

  49. Klein N. and Gafni H., IEEE Trans. Electron. Dev. 13, 281 (1966)

    Article  Google Scholar 

  50. Klein N. and Levanon N., J. Appl. Phys. 38, 3721 (1967)

    Article  CAS  Google Scholar 

  51. Klein N. and Levanon N., J. Electrochem. Soc. 116, 963 (1969)

    Article  CAS  Google Scholar 

  52. Harrop P. J. and Campbell D. S., Handbook of Thin Film Technology, eds. Maissel L. I. and Glang R. (McGraw-Hill, New York, 1970) p.16

    Google Scholar 

  53. Zuleeg R. and Miller R. S., Sol. St. Electron. 7, 575 (1964)

    Article  CAS  Google Scholar 

  54. Tagantsev A. K., Kholkin A. L., Colla E. L., Brooks K. G., and Setter N., Integ. Ferroelec. 10, 189 (1995)

    Article  CAS  Google Scholar 

  55. Bernacki S. E., MRS Proc. 243, 135 (1992)

    Article  CAS  Google Scholar 

  56. Scott J. F., Galt D., et al., Integ. Ferroelec. 6, 189 (1995)

    Article  CAS  Google Scholar 

  57. Watanabe K., private communication

    Google Scholar 

  58. Scott J. F., Integ. Ferroelec. 232, 25 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, J.F. (2000). Electrical Breakdown (DRAMs and NV-RAMs). In: Ferroelectric Memories. Springer Series in Advanced Microelectronics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04307-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04307-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08565-9

  • Online ISBN: 978-3-662-04307-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics