Advertisement

Electrical Breakdown (DRAMs and NV-RAMs)

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

Many aspects of the design engineering, materials processing and selection, and applied physics (e.g., switching kinetics) are unrelated in ferroelectric applications to nonvolatile RAMs compared with DRAMs. In the ferroelectric NV-RAM the ferroelectric polarization contains the stored information whereas in a ferroelectric DRAM, the ferroelectric film is merely a highdielectric capacitor and can have P r = 0. However, some issues are the same, and this chapter deals with one of them, electrical breakdown, which is paramount for NV-RAMs, DRAMs, and other integrated ferroelectric devices such as bypass capacitors, which are not memories.

Keywords

Ramp Rate Electrical Breakdown Schottky Barrier Height Strontium Titanate Remanent Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 80.
    O’Dwyer J. J., Theory of Dielectric Breakdown in Solids (Clarendon Press, Oxford, 1964);Google Scholar
  2. 80a.
    Wolters D. R. and Zegers-van Duijnhoven A. T. A., J. Vac. Sci. Technol. A5, 1563 (1987);CrossRefGoogle Scholar
  3. 80b.
    Coelho R., Physics of Dielectrics (Elsevier, Lausanne, 1979);Google Scholar
  4. 80c.
    Waser R. and Smyth D. M., Ferroelectric Thin Films, eds. Paz de Araujo C. A., Scott J. F., and Taylor G. W. (Gordon & Breach, New York, 1996) p.47;Google Scholar
  5. 80d.
    Williams R., Phys. Rev. 125, 850 (1962)CrossRefGoogle Scholar
  6. 81.
    No K., et al., MRS Proc. 433, 9 (1996);CrossRefGoogle Scholar
  7. 81a.
    Seifert S., Loebmann P., and Sporn D., J. Phys. IV France 8, 61 (1998)CrossRefGoogle Scholar
  8. 82.
    Vlasenko N. A., Opt. i Spekt. 18, 260 (1965)Google Scholar
  9. 83.
    Goetzberger A., McDonald B., Haitz R. H., and Scarlett R. M., J. Appl. Phys. 34, 1591 (1980)CrossRefGoogle Scholar
  10. 84.
    Pearsall T. P., J. Appl. Phys. 34, 1591 (1980)Google Scholar
  11. 85.
    Waser R. and Klee M., Integ. Ferroelec. 2, 288 (1990)Google Scholar
  12. 86.
    Von Hippel A., J. Appl. Phvs. 8. 815 (1937)CrossRefGoogle Scholar
  13. 87.
    Von Hippel A., Ergeb. exakt Naturwiss. 14, 118 (1935)Google Scholar
  14. 88.
    Von Hippel A., Z. Phys. 98, 580 (1936)CrossRefGoogle Scholar
  15. 89.
    Dekker A. J., Phys. Rev. 94, 1179 (1954)CrossRefGoogle Scholar
  16. 90.
    Dakin T. W. and Berg D., Progress in Dielectrics, eds. J. B. Birks and J. Hart (Academic Press, New York, 1962) Vol. 4, p.165Google Scholar
  17. 91.
    Sharbaugh H. and Watson P. K., Progress in Dielectrics, eds. J. B. Birks and J. Hart (Academic Press, New York, 1962) Vol. 4, p.226Google Scholar
  18. 92.
    Scott J. F., Azuma M., et al., Integ. Ferroelec. 4 61 (1994)CrossRefGoogle Scholar
  19. 93.
    Nowotny J. and Sloma N., Surface and Near-Surface Chemistry of Oxide Ceramic Materials, eds. J. Nowotny and L. C. Dufour (Elsevier, Amsterdam, 1988)Google Scholar
  20. 94.
    de Boer J. H., Electron Emission and Absorption Phenomena (Cambridge University Press, London, 1935)Google Scholar
  21. 95.
    Zafar S., Hradsky B., et al., J. Appl. Phys. (1999 in press)Google Scholar
  22. 96.
    Scott J. F., Melnick B. M., McMillan L. D., and Paz de Araujo C. A., Integ. Ferroelec. 3, 225 (1993)CrossRefGoogle Scholar
  23. 97.
    Gerson R. and Marshall T. C., J. Appl. Phys. 30, 1650 (1959)CrossRefGoogle Scholar
  24. 98.
    Matsubara S. et al., MRS Proc. 200, 243 (1990)CrossRefGoogle Scholar
  25. 99.
    Matsubara S. et al., MRS Proc. 243, 281 (1992)CrossRefGoogle Scholar
  26. 100.
    Carrano J., et al., IEDM Conf. Proc. (IEEE, New York, 1989) p.225Google Scholar
  27. 101.
    Sudhama C. et al., MRS Proc. 200, 331 (1990)CrossRefGoogle Scholar
  28. 102.
    Arita K., Proc. ISAF, (IEEE; New York, 1996)Google Scholar
  29. 103.
    Scott J. F., Science and Technology of Electroceramic Thin Films, eds. O. Auciello and R. Waser, NATO ASI Series 284 (Kluwer, Dordrecht, 1995) p.249CrossRefGoogle Scholar
  30. 104.
    Scott J. F., Ross F. M., et al., MRS Bull. 21, 33 (1996);Google Scholar
  31. 104a.
    Scott J. F., Ross F. M., et al., Ferroelectrics 201, 43 (1997)CrossRefGoogle Scholar
  32. 105.
    Feng Duan, private communication (1991)Google Scholar
  33. 106.
    Srolovitz D. J. and Scott J. F.. Phvs. Rev. B34. 1815 (1986)Google Scholar
  34. 107.
    Plumlee R., Sandia Laboratories Report SC-RR-67–730 (1967)Google Scholar
  35. 108.
    Bursill L., private communication (1996)Google Scholar
  36. 109.
    De Veirman A. E. M., et al. EMIF-1, Nijmegen (July 4, 1995);Google Scholar
  37. 109a.
    De Veirman A. E. M., et al. Ferroelectrics 186, 51 (1996)CrossRefGoogle Scholar
  38. 110.
    Lipeles R. A., Morgan B. A., and Leung M. S., Integ. Ferroelec. 5, 197 (1994)CrossRefGoogle Scholar
  39. 111.
    Raleigh D. O., Fast-Ion Transport in Solids, ed. W. van Gool (North-Holland, Amsterdam, 1972) p.479Google Scholar
  40. 112.
    Duiker H. M., Ph.D. thesis, Univ. Colorado (1990)Google Scholar
  41. 113.
    Duiker H. M. and Beale P. D., Phys. Rev. B41, 490 (1990)Google Scholar
  42. 114.
    Duiker H. M. et al., J. Appl. Phys. 68, 5783 (1990)CrossRefGoogle Scholar
  43. 115.
    Freund F. et al., Le Vide: Science, Technique et Applications 275, Suppl. 538 (1995) [Proc. 2nd Int. Conf. Space Charge in Solid Dielectrics. , Antibes 19951Google Scholar
  44. 116.
    Scott J. F. et al., J. Appl. Phys. 64, 787 (1988)CrossRefGoogle Scholar
  45. 117.
    Eaton S., private communication (1992)Google Scholar
  46. 118.
    Seitz F., Phys. Rev. 76, 1328 (1949)CrossRefGoogle Scholar
  47. 119.
    Waser R. and Klee M., Integ. Ferroelec. 2. 288 (1992) Phys.CrossRefGoogle Scholar
  48. 120.
    Forlani F. and Minnaja N., Stat. Sol. 4, 311 (1964)CrossRefGoogle Scholar
  49. 121.
    Klein N. and Gafni H., IEEE Trans. Electron. Dev. 13, 281 (1966)CrossRefGoogle Scholar
  50. 122.
    Klein N. and Levanon N., J. Appl. Phys. 38, 3721 (1967)CrossRefGoogle Scholar
  51. 123.
    Klein N. and Levanon N., J. Electrochem. Soc. 116, 963 (1969)CrossRefGoogle Scholar
  52. 124.
    Harrop P. J. and Campbell D. S., Handbook of Thin Film Technology, eds. Maissel L. I. and Glang R. (McGraw-Hill, New York, 1970) p.16Google Scholar
  53. 125.
    Zuleeg R. and Miller R. S., Sol. St. Electron. 7, 575 (1964)CrossRefGoogle Scholar
  54. 126.
    Tagantsev A. K., Kholkin A. L., Colla E. L., Brooks K. G., and Setter N., Integ. Ferroelec. 10, 189 (1995)CrossRefGoogle Scholar
  55. 127.
    Bernacki S. E., MRS Proc. 243, 135 (1992)CrossRefGoogle Scholar
  56. 128.
    Scott J. F., Galt D., et al., Integ. Ferroelec. 6, 189 (1995)CrossRefGoogle Scholar
  57. 129.
    Watanabe K., private communicationGoogle Scholar
  58. 130.
    Scott J. F., Integ. Ferroelec. 232, 25 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations