Basic Properties of RAMs (Random Access Memories)

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)


As of 1988 there were fourteen generically different kinds of digital electronic memories in use (Fig. 2.1a). These ranged from the slow but cheap and highdensity disks for archival storage, to the fast Static RAMs (SRAMs). It was anticipated [53] that the memory market would simplify greatly over the years 1988–98 by the introduction of ferroelectric NonVolatile (NV) RAMs, eliminating core, magnetic bubble memory, and other devices (Fig. 2.1b). The aim of this chapter is to review that development and its present status. In the 1980s much of the motivation (and funding) for the development of ferroelectric NV-RAMs came from the US military. The reasons are illustrated rather graphically in Fig. 2.2. As shown, a typical military aircraft has 96 kbit of EEPROM in its embedded radar warning receivers, 8 Mbit of EEPROM or bubble memory in its removable cockpit recorder, 96 kbit of EEPROM in its electronic counter-measures (and counter-counter measures) receivers, 36 Mbit of SRAM or EEPROM in its main mission computer, 48 kbit in its EEPROM missile memory, and another 200 Mbit of bubble memory or EEPROM for its flight incident recorder and secondary memory. However, by 1999, this impetus has decreased dramatically. The US military has ‘no enemies’ with radiation-producing weapons requiring radiation-hard memories in its military aircraft; and the interest in ferroelectric RAMs has shifted strongly to the commercial sector (including commercial satellites).


Smart Card Random Access Memory Hysteresis Curve Remanent Polarization Read Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 53.
    Scott J. F. and Araujo C. A., Science 246, 1400 (1989)CrossRefGoogle Scholar
  2. 54.
    Schubring N. W., Dork R. A., and Nolta J. P., J. Appl. Phys. 38, 1671 (1967)CrossRefGoogle Scholar
  3. 55.
    Schubring N. W., Dork R. A., and Nolta J. P., Ferroelectricity, ed. E. F. Weller (Elsevier, Amsterdam, 1967) p.269Google Scholar
  4. 56.
    Scott J. F. et al., J. Appl. Phys. 62, 4510 (1987)CrossRefGoogle Scholar
  5. 57.
    Dimmler K., et al., J. Appl. Phys. 61, 5467 (1987)CrossRefGoogle Scholar
  6. 58.
    Ramesh R. et al., Integ. Ferroelec.1, 1 (1992)CrossRefGoogle Scholar
  7. 59.
    Sumi T. et al. (Matsushita—Panasonic), ISSCC Digest, paper FA16.2, p.68 (1994)Google Scholar
  8. 60.
    Sumi T. et al., Integ. Ferroelec. 6, 1 (1995)CrossRefGoogle Scholar
  9. 61.
    Sumi T. et al., Jpn. J. Appl. Phys. 35, 1516 (1996)CrossRefGoogle Scholar
  10. 62.
    Koike H. et al. (NEC), Proc. ISSCC, 16 Feb 1995; reproduced byGoogle Scholar
  11. 62a.
    Paz de Araujo C. A., Scott J. F. and Taylor G. W., Ferroelectric Thin Films (Gordon & Breach, New York, 1996) p.4Google Scholar
  12. 63.
    Fazan P. C. (Micron), Integ. Ferroelec. 4, 247 (1994)CrossRefGoogle Scholar
  13. 64.
    Gnade B., Summerfelt S. R., and Crenshaw D. (Texas Instruments), Science and Technology of Electroceramic Thin Films. NATO ASI Series, eds. Auciello O. and Waser R. (Kluwer, Dordrecht, 1995) p.284Google Scholar
  14. 65.
    Kotecki D. E. (IBM), Integ. Ferroelec. 16, 1 (1997);CrossRefGoogle Scholar
  15. 65a.
    Bernacki S. et al., Integ. Ferroelec. 3, 1 (1993)CrossRefGoogle Scholar
  16. 66.
    Kinney W., Integ. Ferroelec. 4, 131 (1994)CrossRefGoogle Scholar
  17. 67.
    Fukushima T. et al., VLSI Circuit Digest of Technical Papers (1996) p.46Google Scholar
  18. 68.
    Duiker H. M. et al., J. Appl. Phys. 68, 5783 (1990)CrossRefGoogle Scholar
  19. 69.
    Song T. K., Ahn J., Yang B., Aggarwal S., and Ramesh R., J. Korean Phys. Soc. 32, S1721 (1998);Google Scholar
  20. 69a.
    Wouters D. J. et al., J. Phys. IV France 8, 205 (1998)CrossRefGoogle Scholar
  21. 70.
    Okazaki K. and Nagata K., J. Am. Ceram. Soc. 56, 82 (1973)CrossRefGoogle Scholar
  22. 71.
    Okazaki K. et al., Ferroelec. 7, 153 (1974)CrossRefGoogle Scholar
  23. 72.
    Lang S. B. and Das-Gupta D. K., J. Appl. Phys. 59, 2151 (1986)CrossRefGoogle Scholar
  24. 73.
    Cheng Z. and Yao X., Ferroelec. 109, 155 (1990)CrossRefGoogle Scholar
  25. 74.
    Brennan C. Integ. Ferroelec. 8, 335 (1995)CrossRefGoogle Scholar
  26. 75.
    Brennan C., Integ. Ferroelec. 8, 93 (1995)CrossRefGoogle Scholar
  27. 76.
    Melnick B. M., Cuchiaro J. D., McMillan L. D., Paz de Araujo C. A., and Scott J. F., Ferroelec. 112, 329 (1990)CrossRefGoogle Scholar
  28. 77.
    Maderic B. P., Sanchez L. E., and Wu S.-Y., Ferroelec. 116, 65 (1991)CrossRefGoogle Scholar
  29. 78.
    Raleigh D. O., Interphase Phenomena in Solid Electrochemical Cells, Fast-Ion Transport in Solids, ed. van Gool W. (North-Holland, Amsterdam, 1972) p.479Google Scholar
  30. 79.
    Xu Y., Chen C. J., Xu R., and MacKenzie J. D., Ferroelec. 108, 1653 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations