Advertisement

Drawbacks and Disadvantages

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

The main difficulties associated with nonvolatile ferroelectric memories are listed below. Until these are overcome, it will be difficult for NV-RAMs using ferroelectric thin films to displace flash EEPROMs for most applications.

Keywords

Barium Titanate Bottom Electrode Radiation Hardness Ferroelectric Film Tungsten Silicide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 533.
    Park B. H., Kong B. S., Bu S. D., Noh T. W., Lee J., and Jo W., Nature 401, 682 (1999)CrossRefGoogle Scholar
  2. 534.
    Sanchez L. E., Dion D. T., Wu S.-Y., and Naik I. K., Ferroelec. 116, 1 (1991)CrossRefGoogle Scholar
  3. 535.
    Dietz G. W., Schumacher M. and Waser R., Science and Technology of Electroceramic Thin Films, eds. Waser R. M. and Auciello O. (Kluwer, Dordrecht, 1995) p.269. For an earlier study of fast current transients in dP/dt see Benedetto J. M., Moore R. A., and McLean, F. B., Integ. Ferroelec. 1, 195 (1992). Cottrell desorption is discussed by Richert H. and Steiner R., Z. Phys. Chem. 49, 127 (1966)Google Scholar
  4. 536.
    Scott J. F., Habbal F., and Zvirgzds J. A., J. Chem. Phys. 72, 2760 (1980)CrossRefGoogle Scholar
  5. 537.
    Zafar S. et al., Appl. Phys. Lett. 73, 175 (1998)CrossRefGoogle Scholar
  6. 538.
    Williams R., J. Phys. Chem. Sol. 22, 129 (1961); Phys. Rev. 125, 850 (1962); Many A., J. Phys. Chem. Sol. 26, 575 (1965); Boer K. W. and Kummel U., Z. Phys. Chem. 200, 180 (1952); Z. Naturforsch. 9A, 117 (1954); 16A, 678 (1958); Ann. Phys. (Leipzig) 14, 341 (1954); 20, 303 (1957)CrossRefGoogle Scholar
  7. 539.
    Wittels M. C. and Sheril F. A., J. Appl. Phys. 28, 606 (1957); Lefkowitz I. and Mitsui T., J. Appl. Phys. 30, 269 (1959)CrossRefGoogle Scholar
  8. 540.
    Chynoweth A. G., Phys. Rev. 102, 705 (1956)CrossRefGoogle Scholar
  9. 541.
    Fatuzzo E., Helv. Phys. Acta 33, 502 (1960)Google Scholar
  10. 542.
    Boutin H., Frazer, and Jona F., J. Chem. Phys. Sol. 24, 1341 (1963)CrossRefGoogle Scholar
  11. 543.
    Scott J. F., Paz de Araujo C. A., and McMillan L. D., Ferroelec. 116, 107 (1991); Scott J. F. et al., J. Appl. Phys. 66, 1444 (1989)CrossRefGoogle Scholar
  12. 544.
    Nasby R. D., Schwank J. R., Rodgers M. S., and Miller S. L., Integ. Ferroelec. 2, 91 (1992); Zheng L., Lin C., and Rao K. V., J. Phys. IV France 8, 265 (1998)CrossRefGoogle Scholar
  13. 545.
    Taylor G. W., Ferroelec. 18, 17 (1978)CrossRefGoogle Scholar
  14. 546.
    Moll J. L. and Tarui Y., IEEE Trans. Electron Dey. 10, 328 (1963)Google Scholar
  15. 547.
    Zuleeg R. and Wieder H. H., Sol. St. Electron. 9, 657 (1966)CrossRefGoogle Scholar
  16. 548.
    Heyman P. M. and Heilmeyer G. H., Proc. IEEE 54, 842 (1966)CrossRefGoogle Scholar
  17. 549.
    Perlman S. S. and Ludwig K. H., IEEE Trans. Electron Dey. 14, 816 (1967)CrossRefGoogle Scholar
  18. 550.
    Teather G. G. and Young L., Sol. St. Electron. 11, 527 (1968)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations