Nanophase Devices

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)


The best nanoscale ferroelectric thin-film arrays to be produced thus far are by Alexe [516]. As shown in Fig. 17.1, these e-beam arrays of SBT are 100 nm on a side and switch very well. They are about 100 times smaller than those reported elsewhere [517]. These arrays were fabricated with minimum lateral sizes less than 100 nm by using Electron Beam Direct Writing (EBDW); such maskless direct writing eliminates the need for submicron etching. It is useful for metallic and oxide nanostructures. Chemical reactions are induced locally in a metal—organic thin film by irradiation with an e-beam. The resulting pattern is developed by dissolving the unexposed area in a specific solvent and fixed by thermal annealing.


Rapid Thermal Annealing Bismuth Oxide Fringe Field Bismuth Titanate Good Electrical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 516.
    Alexe M., ISIF, Colorado Springs (March 1999), Integ. Ferroelec. (in press)Google Scholar
  2. 517.
    Okamura S., Mori K., Tsukamoto T., and Shiosaki T., Integ. Ferroelec. 18, 311 (1997)CrossRefGoogle Scholar
  3. 518.
    Scott J. F. et al., Integ. Ferroelec. 21, 1 (1998)CrossRefGoogle Scholar
  4. 519.
    Alexe M. et al., Appl. Phys. Lett. 73, 1592 (1998); Switzer J. A., Shumsky M. G., and Bohannan E. W., Science 284, 293 (1999)CrossRefGoogle Scholar
  5. 520.
    Yu B., Zhu C., and Gan F., J. Appl. Phys. 82, 4532 (1997)CrossRefGoogle Scholar
  6. 521.
    Taylor G. I., Proc. Roy. Soc. (London) A280, 383 (1964); Turnbull D., J. Appl. Phys. 23, 1022 (1950)CrossRefGoogle Scholar
  7. 522.
    Wakayama Y. and Tanaka S.-I., Proc. Nano’98, Stockholm (June 16, 1998) p.49; Nanostructured Materials 12 13 (1999)Google Scholar
  8. 523.
    Moore J. T. et al., Appl. Phys. Lett. 72, 1840 (1998); 72, 1254 (1998); Burmeister F. et al., Adv. Mater. 10, 495 (1998)CrossRefGoogle Scholar
  9. 524.
    Watanabe K. et al., Japanese patent application # H08–261500Google Scholar
  10. 525.
    Zafar S. et al., J. Appl. Phys. 82, 4469 (1997)CrossRefGoogle Scholar
  11. 526.
    Watanabe K., Scott J. F., Hartmann A. J.; Appl. Phys. (in press, 1999); Hartner W. et al., Integ. Ferroelec. 22, 23 (1998)CrossRefGoogle Scholar
  12. 527.
    Watanabe K., Hartmann A. J., and Scott J. F., Appl. Phys. (in press 1999)Google Scholar
  13. 528.
    Isobe C. et al., Integ. Ferroelec. 14, 95 (1997)CrossRefGoogle Scholar
  14. 529.
    Alexe M., Goesele U. et al., submitted to Science (1999)Google Scholar
  15. 530.
    Amanuma K. and Kunio T., Jpn. J. Appl. Phys. 35, 5229 (1996)CrossRefGoogle Scholar
  16. 531.
    Scott J. F., Thin Film Ferroelectric Materials and Devices, ed. R. Ramesh (Kluwer Academic, Dordrecht, 1997) p.115Google Scholar
  17. 532.
    Sushkov O., private communicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations