Advertisement

Wafer Bonding

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

Wafer bonding is a technique whereby a film, including a ferroelectric film, is grown on a sacrificial substrate which is subsequently removed by etching it off from the back [488]. It avoids the exposure of the ferroelectric semiconductor to high processing temperatures [489], and hence is especially applicable to systems such as ferroelectric-gated FETs (Chap. 12) or pyroelectric detectors using PST (lead scandium tantalate) — which suffers from a very high (900°C) processing temperature that prevents full integration into Si chips. (However, recently PST has been made via sol—gel at lower temperatures [489].)

Keywords

Wafer Bonding Ferroelectric Film Chemical Solution Deposition Memory Window Pyroelectric Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 488.
    Alexe M., Kastner G., Hesse D., and Goesele U., Appl. Phys. Lett. 70, 3416 (1997)CrossRefGoogle Scholar
  2. 488a.
    Alexe M., Kastner G., Hesse D., and Goesele U., J. Phys. IV France 8, 239 (1998)CrossRefGoogle Scholar
  3. 488b.
    Alexe M., Kastner G., Hesse D., and Goesele U., Mater. Chem. and Phys. 55, 55 (1998)CrossRefGoogle Scholar
  4. 488c.
    Alexe M., Kastner G., Hesse D., and Goesele U., J. Korean Phys. Soc. 32, S1618 (1998)Google Scholar
  5. 489.
    Alexe M., Scott J. F., Pignolet A., Hesse D., and Goesele U., Integ. Ferroelec. 19, 95 (1998)CrossRefGoogle Scholar
  6. 489.
    Takeishi T. and Whatmore R. W., J. Phys. IV (France) 8, 57 (1998)Google Scholar
  7. 490.
    Budd K. D., Dey S. K., and Payne D. A., Brit. Ceram. Proc. 36, 107 (1985)Google Scholar
  8. 491.
    Stengl T., Ahn K.-Y., and Goesele U., Jpn. J. Appl. Phys. 27, 236 (1988)CrossRefGoogle Scholar
  9. 492.
    Maszara W. P., Goetz G., Caviglia A., and McKitterick J. B., J. Appl. Phys. 64, 4943 (1988)CrossRefGoogle Scholar
  10. 493.
    Watton R., Ferroelec. 91, 87 (1989)CrossRefGoogle Scholar
  11. 493.
    Watton R., Ferroelec. 133, 5 (1992)CrossRefGoogle Scholar
  12. 493.
    Watton R., Integ. Ferroelec. 4, 175 (1994)CrossRefGoogle Scholar
  13. 494.
    Shorrocks N. M., Patel A., and Whatmore R. W., Ferroelec. 134, 343 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations