Skip to main content

Wafer Bonding

  • Chapter
Ferroelectric Memories

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 3))

  • 976 Accesses

Abstract

Wafer bonding is a technique whereby a film, including a ferroelectric film, is grown on a sacrificial substrate which is subsequently removed by etching it off from the back [488]. It avoids the exposure of the ferroelectric semiconductor to high processing temperatures [489], and hence is especially applicable to systems such as ferroelectric-gated FETs (Chap. 12) or pyroelectric detectors using PST (lead scandium tantalate) — which suffers from a very high (900°C) processing temperature that prevents full integration into Si chips. (However, recently PST has been made via sol—gel at lower temperatures [489].)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexe M., Kastner G., Hesse D., and Goesele U., Appl. Phys. Lett. 70, 3416 (1997)

    Article  Google Scholar 

  2. Alexe M., Kastner G., Hesse D., and Goesele U., J. Phys. IV France 8, 239 (1998)

    Article  Google Scholar 

  3. Alexe M., Kastner G., Hesse D., and Goesele U., Mater. Chem. and Phys. 55, 55 (1998)

    Article  CAS  Google Scholar 

  4. Alexe M., Kastner G., Hesse D., and Goesele U., J. Korean Phys. Soc. 32, S1618 (1998)

    Google Scholar 

  5. Alexe M., Scott J. F., Pignolet A., Hesse D., and Goesele U., Integ. Ferroelec. 19, 95 (1998)

    Article  CAS  Google Scholar 

  6. Takeishi T. and Whatmore R. W., J. Phys. IV (France) 8, 57 (1998)

    Google Scholar 

  7. Budd K. D., Dey S. K., and Payne D. A., Brit. Ceram. Proc. 36, 107 (1985)

    CAS  Google Scholar 

  8. Stengl T., Ahn K.-Y., and Goesele U., Jpn. J. Appl. Phys. 27, 236 (1988)

    Article  Google Scholar 

  9. Maszara W. P., Goetz G., Caviglia A., and McKitterick J. B., J. Appl. Phys. 64, 4943 (1988)

    Article  CAS  Google Scholar 

  10. Watton R., Ferroelec. 91, 87 (1989)

    Article  CAS  Google Scholar 

  11. Watton R., Ferroelec. 133, 5 (1992)

    Article  CAS  Google Scholar 

  12. Watton R., Integ. Ferroelec. 4, 175 (1994)

    Article  Google Scholar 

  13. Shorrocks N. M., Patel A., and Whatmore R. W., Ferroelec. 134, 343 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, J.F. (2000). Wafer Bonding. In: Ferroelectric Memories. Springer Series in Advanced Microelectronics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04307-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04307-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08565-9

  • Online ISBN: 978-3-662-04307-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics