Skip to main content

Ferroelectrics-on-Superconductor Devices: Phased-Array Radar and 10–100 GHz Devices

  • Chapter
Ferroelectric Memories

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 3))

Abstract

The first invention using high-T c superconductors on ferroelectric films (or high-dielectric paraelectric materials such as strontium titanate or BST that are nearly ferroelectric) were from the University of Colorado group involving Hermann, Yandrofski, Price, Barnes, and Scott [464, 465, 466]. These devices (Figs. 13.1 and 13.2) incorporated the superconductor merely as a ground plane, with the ferroelectric film in transverse geometry (interdigitalized electrodes, no field across the film thickness) and a micro-stripline configuration (Figs. 13.3 and 13.4) [467]. The fundamental advantage of such devices was in their ability to provide very large phase shifts (> 25%) at very low voltages, and to operate in the 10–20 GHz regime at low loss (Q > 1000, loss tangent < 1%) [468]. Prior to this work, ferroelectrics had traditionally been viewed as unsuitable for microwave devices [469]. Hermann’s group successfully fabricated devices on both YBCO (Yttrium Barium Copper Oxide) and the thallium-based high-T c superconductors. A variety of devices were made and characterized by Galt, Price, and Ono [470].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yandrofski R., et al., US Patent #5,472,935 (1995)

    Google Scholar 

  2. Herman A. M. et al., Bull. Am. Phys. Soc. 38, 689 (1993)

    Google Scholar 

  3. Hermann A. M. et al., J. Superconduct. 7, 463 (1994)

    Article  CAS  Google Scholar 

  4. Barnes F. S., et al., Integ. Ferroelec. 8, 171 (1995)

    Article  CAS  Google Scholar 

  5. Galt D., Price J. C., Beall J. A., and Ono R. H., Appl. Phys. Lett. 63, 3078 (1993)

    Article  CAS  Google Scholar 

  6. Jackson J. D., Classical Electrodynamics (Wiley, New York, 1962) p.264

    Google Scholar 

  7. Scott J. F. et al., Integ. Ferroelec. 6, 189 (1995);Galt D., Price J. C., and Ono R. H., IEEE MTT-S Int. Micowave Symp. Digest (1993) p.1421;

    Article  CAS  Google Scholar 

  8. Zafar S. et al., Appl. Phys. Lett. 72, 2820 (1998)

    Article  CAS  Google Scholar 

  9. Theis C. D. et al., Thin Solid Films 325, 107 (1998);

    Article  CAS  Google Scholar 

  10. Theis C. D. et al., Appl. Phys. Lett. 72, 2817 (1998) ; Kaiser D. L. et al., J. Mater. Res. (1999, in press)

    Article  CAS  Google Scholar 

  11. Missert N. et al., IEEE Trans. Appl. Superconduct. 13, 1741 (1993)

    Article  Google Scholar 

  12. Integrated Ferroelectrics, Vol. 22 (1998)

    Google Scholar 

  13. Jack L., US Patent #5,070,241 (1991)

    Google Scholar 

  14. Babbitt R. W. et al., US Patent #5,212,463 (1993)

    Google Scholar 

  15. Rabson T. A., Rost T. A., and Lin H., Integ. Ferroelec. 6, 15 (1995)

    Article  CAS  Google Scholar 

  16. Smith E. B., Lin H., Rost T. A., and Rabson T., Integ. Ferroelec. 3, 85 (1993)

    Article  Google Scholar 

  17. Kalkur T. S., Jacobs B. and Argos G., Integ. Ferroelec. 5, 177 (1994)

    Article  CAS  Google Scholar 

  18. Lin M. and Kalkur T. S., Integ. Ferroelec. 14, 247 (1997)

    Article  Google Scholar 

  19. Kalkur T. S., Kwor R. Y., Levenson L. and Kamerdiner L., Integ. Ferroelec. 1, 327 (1992)

    Article  Google Scholar 

  20. Sinharoy S. et al., IEEE Trans. Ultrason. Freq. 38, 663 (1991);

    Article  CAS  Google Scholar 

  21. Sinharoy S. et al., J. Vac. Sci. Technol. A9, 409 (1991);

    CAS  Google Scholar 

  22. Sinharoy S. et al., Integ. Ferroelec. 1, 377 (1992)

    Article  Google Scholar 

  23. Lampe D. R., Adams D. A., Sinharoy S., and Buhay H., Integ. Ferroelec. 3, 121 (1993)

    Article  Google Scholar 

  24. Aizawa K., Ichiki T. and Ishiwara H., MRS Proc. 310, 313 (1993)

    Article  CAS  Google Scholar 

  25. McMillan L. D., reproduced in Scott J. F., Ferroelec. Rev. 1, 1 (1998)

    Google Scholar 

  26. Kalkur T. S., Integ. Ferroelec. 3, 351 (1993)

    Article  Google Scholar 

  27. Autran J. L. et al., Suppl. Le Vide: Science, Technique, et Applications 275, 44 (1995) [Proc. 2nd Int. Conf. Space Charge in Solid Dielectrics, Antibes, 1995]

    Google Scholar 

  28. Watanabe Y., Tamamura M., and Matsumoto Y., Jpn. J. Appl. Phys. 35, 1564 (1996)

    Article  CAS  Google Scholar 

  29. Ishiwara H., Jpn. J. Appl. Phys. 32, 442 (1993)

    Article  Google Scholar 

  30. Ishiwara H., Shimamura T., and Tokumitsu E., Jpn. J. Appl. Phys. 36, 1655 (1997)

    Article  CAS  Google Scholar 

  31. Alexe M., Pignolet A., Senz S. and Hesse D., Ferroelec. 201, 157 (1997) achieve a memory window of 3.35 V with bismuth titanate sol—gel films; for other ferroelectric gate materials, see Proc. SSDM, Jpn. J. Appl. Phys. 38 (1999)

    Article  CAS  Google Scholar 

  32. McKee R. et al., Phys. Rev. Lett. 81, 3017 (1998)

    Article  Google Scholar 

  33. Alexe M., Physics World 12, 21 (1999)

    Google Scholar 

  34. Alexe M., Appl. Phys. Lett. 72, 2283 (1998)

    Article  CAS  Google Scholar 

  35. Gaucher P., Eichner D., Hector J. and Von Munch W., J. Phys. IV France 8, 235 (1998)

    Article  Google Scholar 

  36. Alexe M. et al., J. Phys. IV France 8, 239 (1998)

    Article  Google Scholar 

  37. Collier D. C., Integ. Ferroelec. 4, 113 (1994)

    Article  Google Scholar 

  38. Kain A. et al., Integ. Ferroelec. 8, 45 (1995)

    Article  CAS  Google Scholar 

  39. Jackson C. M. et al., Integ. Ferroelec. 4, 121 (1994)

    Article  CAS  Google Scholar 

  40. Wilber W., et al., Integ. Ferroelec. 19, 149 (1998)

    Article  CAS  Google Scholar 

  41. Sengupta L. C. et al., Integ. Ferroelec. 8, 77 (1995)

    Article  CAS  Google Scholar 

  42. Babbitt R. W., Koscica T. E., and Drach W. C., Microwave J. 35, 63 (1992)

    Google Scholar 

  43. Babbitt R. W. et al., Integ. Ferroelec. 8, 65 (1995)

    Article  CAS  Google Scholar 

  44. Tokunaga M., J. Phys. Soc. Jpn. 56, 1653 (1987)

    Article  CAS  Google Scholar 

  45. Tokunaga M., J. Phys. Soc. Jpn. 57, 4275 (1988)

    Article  Google Scholar 

  46. The original work on pure cadmium titanate [Smolensky A., JETP 20, 137 (1958)] and on lead pyrochlore [Hulm A., Phys. Rev. 92, 504 (1953)] did not demonstrate switching, but on the basis of recent work on mixed crystals of form Ca2 — 2x Pb2x Nb2 O7 and Cax Cdl — x TiO3, it is clear that the pure materials are ferroelectric at and below the stated temperatures

    Google Scholar 

  47. Petrov P. K. et al., J. Appl. Phys. 84, 3134 (1998)

    Article  CAS  Google Scholar 

  48. Kozyrev A. B. et al., J. Appl. Phys. 84, 3325 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, J.F. (2000). Ferroelectrics-on-Superconductor Devices: Phased-Array Radar and 10–100 GHz Devices. In: Ferroelectric Memories. Springer Series in Advanced Microelectronics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04307-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04307-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08565-9

  • Online ISBN: 978-3-662-04307-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics