Advertisement

Ferroelectrics-on-Superconductor Devices: Phased-Array Radar and 10–100 GHz Devices

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

The first invention using high-T c superconductors on ferroelectric films (or high-dielectric paraelectric materials such as strontium titanate or BST that are nearly ferroelectric) were from the University of Colorado group involving Hermann, Yandrofski, Price, Barnes, and Scott [464, 465, 466]. These devices (Figs. 13.1 and 13.2) incorporated the superconductor merely as a ground plane, with the ferroelectric film in transverse geometry (interdigitalized electrodes, no field across the film thickness) and a micro-stripline configuration (Figs. 13.3 and 13.4) [467]. The fundamental advantage of such devices was in their ability to provide very large phase shifts (> 25%) at very low voltages, and to operate in the 10–20 GHz regime at low loss (Q > 1000, loss tangent < 1%) [468]. Prior to this work, ferroelectrics had traditionally been viewed as unsuitable for microwave devices [469]. Hermann’s group successfully fabricated devices on both YBCO (Yttrium Barium Copper Oxide) and the thallium-based high-T c superconductors. A variety of devices were made and characterized by Galt, Price, and Ono [470].

Keywords

Loss Tangent Microstrip Antenna Strontium Titanate Ferroelectric Film Damage Surface Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 464.
    Yandrofski R., et al., US Patent #5,472,935 (1995)Google Scholar
  2. 465.
    Herman A. M. et al., Bull. Am. Phys. Soc. 38, 689 (1993)Google Scholar
  3. 466.
    Hermann A. M. et al., J. Superconduct. 7, 463 (1994)CrossRefGoogle Scholar
  4. 467.
    Barnes F. S., et al., Integ. Ferroelec. 8, 171 (1995)CrossRefGoogle Scholar
  5. 468.
    Galt D., Price J. C., Beall J. A., and Ono R. H., Appl. Phys. Lett. 63, 3078 (1993)CrossRefGoogle Scholar
  6. 469.
    Jackson J. D., Classical Electrodynamics (Wiley, New York, 1962) p.264Google Scholar
  7. 470.
    Scott J. F. et al., Integ. Ferroelec. 6, 189 (1995);Galt D., Price J. C., and Ono R. H., IEEE MTT-S Int. Micowave Symp. Digest (1993) p.1421;CrossRefGoogle Scholar
  8. 470a.
    Zafar S. et al., Appl. Phys. Lett. 72, 2820 (1998)CrossRefGoogle Scholar
  9. 471.
    Theis C. D. et al., Thin Solid Films 325, 107 (1998);CrossRefGoogle Scholar
  10. 471a.
    Theis C. D. et al., Appl. Phys. Lett. 72, 2817 (1998) ; Kaiser D. L. et al., J. Mater. Res. (1999, in press)CrossRefGoogle Scholar
  11. 472.
    Missert N. et al., IEEE Trans. Appl. Superconduct. 13, 1741 (1993)CrossRefGoogle Scholar
  12. 473.
    Integrated Ferroelectrics, Vol. 22 (1998)Google Scholar
  13. 474.
    Jack L., US Patent #5,070,241 (1991)Google Scholar
  14. 475.
    Babbitt R. W. et al., US Patent #5,212,463 (1993)Google Scholar
  15. 444.
    Rabson T. A., Rost T. A., and Lin H., Integ. Ferroelec. 6, 15 (1995)CrossRefGoogle Scholar
  16. 445.
    Smith E. B., Lin H., Rost T. A., and Rabson T., Integ. Ferroelec. 3, 85 (1993)CrossRefGoogle Scholar
  17. 446.
    Kalkur T. S., Jacobs B. and Argos G., Integ. Ferroelec. 5, 177 (1994)CrossRefGoogle Scholar
  18. 447.
    Lin M. and Kalkur T. S., Integ. Ferroelec. 14, 247 (1997)CrossRefGoogle Scholar
  19. 448.
    Kalkur T. S., Kwor R. Y., Levenson L. and Kamerdiner L., Integ. Ferroelec. 1, 327 (1992)CrossRefGoogle Scholar
  20. 449.
    Sinharoy S. et al., IEEE Trans. Ultrason. Freq. 38, 663 (1991);CrossRefGoogle Scholar
  21. 449a.
    Sinharoy S. et al., J. Vac. Sci. Technol. A9, 409 (1991);Google Scholar
  22. 449b.
    Sinharoy S. et al., Integ. Ferroelec. 1, 377 (1992)CrossRefGoogle Scholar
  23. 450.
    Lampe D. R., Adams D. A., Sinharoy S., and Buhay H., Integ. Ferroelec. 3, 121 (1993)CrossRefGoogle Scholar
  24. 451.
    Aizawa K., Ichiki T. and Ishiwara H., MRS Proc. 310, 313 (1993)CrossRefGoogle Scholar
  25. 452.
    McMillan L. D., reproduced in Scott J. F., Ferroelec. Rev. 1, 1 (1998)Google Scholar
  26. 453.
    Kalkur T. S., Integ. Ferroelec. 3, 351 (1993)CrossRefGoogle Scholar
  27. 454.
    Autran J. L. et al., Suppl. Le Vide: Science, Technique, et Applications 275, 44 (1995) [Proc. 2nd Int. Conf. Space Charge in Solid Dielectrics, Antibes, 1995]Google Scholar
  28. 455.
    Watanabe Y., Tamamura M., and Matsumoto Y., Jpn. J. Appl. Phys. 35, 1564 (1996)CrossRefGoogle Scholar
  29. 456.
    Ishiwara H., Jpn. J. Appl. Phys. 32, 442 (1993)CrossRefGoogle Scholar
  30. 457.
    Ishiwara H., Shimamura T., and Tokumitsu E., Jpn. J. Appl. Phys. 36, 1655 (1997)CrossRefGoogle Scholar
  31. 458.
    Alexe M., Pignolet A., Senz S. and Hesse D., Ferroelec. 201, 157 (1997) achieve a memory window of 3.35 V with bismuth titanate sol—gel films; for other ferroelectric gate materials, see Proc. SSDM, Jpn. J. Appl. Phys. 38 (1999)CrossRefGoogle Scholar
  32. 459.
    McKee R. et al., Phys. Rev. Lett. 81, 3017 (1998)CrossRefGoogle Scholar
  33. 460.
    Alexe M., Physics World 12, 21 (1999)Google Scholar
  34. 461.
    Alexe M., Appl. Phys. Lett. 72, 2283 (1998)CrossRefGoogle Scholar
  35. 462.
    Gaucher P., Eichner D., Hector J. and Von Munch W., J. Phys. IV France 8, 235 (1998)CrossRefGoogle Scholar
  36. 463.
    Alexe M. et al., J. Phys. IV France 8, 239 (1998)CrossRefGoogle Scholar
  37. 476.
    Collier D. C., Integ. Ferroelec. 4, 113 (1994)CrossRefGoogle Scholar
  38. 477.
    Kain A. et al., Integ. Ferroelec. 8, 45 (1995)CrossRefGoogle Scholar
  39. 478.
    Jackson C. M. et al., Integ. Ferroelec. 4, 121 (1994)CrossRefGoogle Scholar
  40. 479.
    Wilber W., et al., Integ. Ferroelec. 19, 149 (1998)CrossRefGoogle Scholar
  41. 480.
    Sengupta L. C. et al., Integ. Ferroelec. 8, 77 (1995)CrossRefGoogle Scholar
  42. 481.
    Babbitt R. W., Koscica T. E., and Drach W. C., Microwave J. 35, 63 (1992)Google Scholar
  43. 482.
    Babbitt R. W. et al., Integ. Ferroelec. 8, 65 (1995)CrossRefGoogle Scholar
  44. 483.
    Tokunaga M., J. Phys. Soc. Jpn. 56, 1653 (1987)CrossRefGoogle Scholar
  45. 484.
    Tokunaga M., J. Phys. Soc. Jpn. 57, 4275 (1988)CrossRefGoogle Scholar
  46. 485.
    The original work on pure cadmium titanate [Smolensky A., JETP 20, 137 (1958)] and on lead pyrochlore [Hulm A., Phys. Rev. 92, 504 (1953)] did not demonstrate switching, but on the basis of recent work on mixed crystals of form Ca2 — 2x Pb2x Nb2 O7 and Cax Cdl — x TiO3, it is clear that the pure materials are ferroelectric at and below the stated temperaturesGoogle Scholar
  47. 486.
    Petrov P. K. et al., J. Appl. Phys. 84, 3134 (1998)CrossRefGoogle Scholar
  48. 487.
    Kozyrev A. B. et al., J. Appl. Phys. 84, 3325 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations