Nondestructive Read-Out Devices

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)


All the devices discussed so far in this book have destructive READ operations. Since a memory may be written perhaps only 106 times but read 1012 times, this reset operation involves a lot of switching and fatigue that could be eliminated in a NonDestructive Read-Out device (NDRO).


Lithium Niobate Trap Density Switching Cycle Lead Titanate Ferroelectric Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 444.
    Rabson T. A., Rost T. A., and Lin H., Integ. Ferroelec. 6, 15 (1995)CrossRefGoogle Scholar
  2. 445.
    Smith E. B., Lin H., Rost T. A., and Rabson T., Integ. Ferroelec. 3, 85 (1993)CrossRefGoogle Scholar
  3. 446.
    Kalkur T. S., Jacobs B. and Argos G., Integ. Ferroelec. 5, 177 (1994)CrossRefGoogle Scholar
  4. 447.
    Lin M. and Kalkur T. S., Integ. Ferroelec. 14, 247 (1997)CrossRefGoogle Scholar
  5. 448.
    Kalkur T. S., Kwor R. Y., Levenson L. and Kamerdiner L., Integ. Ferroelec. 1, 327 (1992)CrossRefGoogle Scholar
  6. 449.
    Sinharoy S. et al., IEEE Trans. Ultrason. Freq. 38, 663 (1991);CrossRefGoogle Scholar
  7. 449a.
    Sinharoy S. et al., J. Vac. Sci. Technol. A9, 409 (1991);Google Scholar
  8. 449a.
    Sinharoy S. et al., Integ. Ferroelec. 1, 377 (1992)CrossRefGoogle Scholar
  9. 450.
    Lampe D. R., Adams D. A., Sinharoy S., and Buhay H., Integ. Ferroelec. 3, 121 (1993)CrossRefGoogle Scholar
  10. 451.
    Aizawa K., Ichiki T. and Ishiwara H., MRS Proc. 310, 313 (1993)CrossRefGoogle Scholar
  11. 452.
    McMillan L. D., reproduced in Scott J. F., Ferroelec. Rev. 1, 1 (1998)Google Scholar
  12. 453.
    Kalkur T. S., Integ. Ferroelec. 3, 351 (1993)CrossRefGoogle Scholar
  13. 454.
    Autran J. L. et al., Suppl. Le Vide: Science, Technique, et Applications 275, 44 (1995) [Proc. 2nd Int. Conf. Space Charge in Solid Dielectrics, Antibes, 1995]Google Scholar
  14. 455.
    Watanabe Y., Tamamura M., and Matsumoto Y., Jpn. J. Appl. Phys. 35, 1564 (1996)CrossRefGoogle Scholar
  15. 456.
    Ishiwara H., Jpn. J. Appl. Phys. 32, 442 (1993)CrossRefGoogle Scholar
  16. 457.
    Ishiwara H., Shimamura T., and Tokumitsu E., Jpn. J. Appl. Phys. 36, 1655 (1997)CrossRefGoogle Scholar
  17. 458.
    Alexe M., Pignolet A., Senz S. and Hesse D., Ferroelec. 201, 157 (1997) achieve a memory window of 3.35 V with bismuth titanate sol—gel films; for other ferroelectric gate materials, see Proc. SSDM, Jpn. J. Appl. Phys. 38 (1999)CrossRefGoogle Scholar
  18. 459.
    McKee R. et al., Phys. Rev. Lett. 81, 3017 (1998)CrossRefGoogle Scholar
  19. 460.
    Alexe M., Physics World 12, 21 (1999)Google Scholar
  20. 461.
    Alexe M., Appl. Phys. Lett. 72, 2283 (1998)CrossRefGoogle Scholar
  21. 462.
    Gaucher P., Eichner D., Hector J. and Von Munch W., J. Phys. IV France 8, 235 (1998)CrossRefGoogle Scholar
  22. 463.
    Alexe M. et al., J. Phys. IV France 8, 239 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations