Skip to main content

Deposition and Processing

  • Chapter
  • 973 Accesses

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 3))

Abstract

A variety of deposition techniques are employed for ferroelectric thin film capacitors to be used in memory devices. These include sputtering [382], MOCVD (Metal-Organic Chemical Vapour Deposition) [383], MOD (MetalOrganic Decomposition) [384], PLD (Pulsed Laser Deposition) [385], solgel (solution—gelation) spin-on techniques [386], and a mist deposition in which stoichiometrically correct submicron droplets are sprayed into the deposition chamber [387]. The MOCVD techniques include a flash process [388, 389, 390, 391, 392] in which the precursor solutions are delivered to the deposition chamber in liquid form (due to their low volatilities) and then flashed into the vapour phase via incandescent lights or laser sources at a shower head delivery point just below the wafer. These flash systems all differ from each other (Isobe’s achieves the highest deposition rate), and all have separate patents. What they share is the ability to handle viscous precursors with low vapour pressures. [The LG Semiconductor Corp. flash process for BST utilizes relatively viscous barium- and strontium-(THD)2-tetraglyme, together with Ti(O-iso-Pr)(THD)2.] True CVD is not used; that is, vapour deposition with chloride or hydride precursors, since halogen contamination is a problem. MBE (Molecular Beam Epitaxy) is generally not used, with one or two research exceptions [393]. And thick film techniques such as spray pyrolysis, slip-casting, etc., are not used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amanuma K., Hase T., and Miyasaka Y., Jpn. J. Appl. Phys. 33, 5211 (1994)

    Article  CAS  Google Scholar 

  2. De Keijser M. et al., Ferroelectric Thin Films, eds. C. Paz de Araujo, J. F. Scott, and G. W. Taylor (Gordon & Breach, New York, 1996) p.485

    Google Scholar 

  3. Fujii E. et al., Int. Elec. Dey. Meeting (IEDM) (1992) p.267

    Google Scholar 

  4. Auciello O., Dat R. and Ramesh R., Ferroelectric Thin Films, eds. C. Araujo, J. F. Scott, and G. W. Taylor (Gordon & Breach, New York, 1996) p.525

    Google Scholar 

  5. Paz de Araujo C. A., McMillan L. D., and Scott J. F., MRS Proc. 230, 277 (1991)

    Google Scholar 

  6. McMillan L. D., et al., Integ. Ferroelec. 2, 351 (1992)

    CAS  Google Scholar 

  7. Isobe C. et al., International Symposium of Integrated Ferroelectrics, Santa Fe, New Mexico, March 1997;

    Google Scholar 

  8. Isobe C. et al., Integ. Ferroelec. 14, 95 (1997)

    Article  CAS  Google Scholar 

  9. Ami T., Hironaka K. et al., MRS Proc. 415, 195 (1996)

    Article  CAS  Google Scholar 

  10. Tao W., Desu S. B., and Li T. K., Mater. Lett. 23, 177 (1995)

    Article  CAS  Google Scholar 

  11. Li T. K. et al., Appl. Phys. Lett. 68, 616 (1996);

    Article  CAS  Google Scholar 

  12. Li T. K. et al., MRS Proc. 415, 189 (1996)

    Article  CAS  Google Scholar 

  13. Kim D. C., Jo W., Lee H. M., and Kim K. Y., Integ. Ferroelec. 18, 137 (1997)

    Article  CAS  Google Scholar 

  14. Gutleben C. D., Appl. Phys. Lett. 71, 3444 (1997);

    Article  CAS  Google Scholar 

  15. McKee R. et al., Phys. Rev. Lett. 81, 3017 (1998);

    Article  Google Scholar 

  16. Alexe M., Physics World 12, 21 (1999)

    Google Scholar 

  17. Schwee L., private communication (1986)

    Google Scholar 

  18. Fleddermann C., Integ. Ferroelec. 5, 29 (1994);

    Article  CAS  Google Scholar 

  19. Uchida H., Soyama N., Kageyama K., Ogi K., and Paz de Araujo C. A., FMA-13 Conf., Kyoto (1996), p.193;

    Google Scholar 

  20. Faure S. P., Chaux O., and Gaucher P., J. Phys. IV France 8, 60 (1998)

    Google Scholar 

  21. Turova N. Ya.and Yanovskaya M. I., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.233; Hanold R. C. F., U. S. Patent #4,081,857 (1975)

    Google Scholar 

  22. Kato K., Integ. Ferroelec. 22, 13 (1998)

    Article  CAS  Google Scholar 

  23. Dey S. K., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.329

    Google Scholar 

  24. Auciello O., Kraus A. R., and Gifford K. D., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.393

    Google Scholar 

  25. Krupanidhi S. B., Hu H., and Fox G. R., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.427

    Google Scholar 

  26. Iijima K., et al., J. Appl. Phys. 60, 361 (1986);

    Article  CAS  Google Scholar 

  27. Iijima K., et al., J. Appl. Phys. 60, 2914 (1986)

    Article  CAS  Google Scholar 

  28. Adachi H., Mitsuyu T., Yamazaki O., and Wasa K., J. Appl. Phys. 60, 736 (1986)

    Article  CAS  Google Scholar 

  29. Sreenivas K. et al., J. Appl. Phys. 61, 411 (1987);

    Article  Google Scholar 

  30. Sreenivas K. et al., Appl. Phys. Lett. 52, 709 (1988);

    Article  CAS  Google Scholar 

  31. Sreenivas K. et al., Thin Solid Films 172, 251 (1989)

    Article  CAS  Google Scholar 

  32. Matsubara M. et al., MRS Proc. 200, 243 (1990); 243, 281 (1992)

    Article  CAS  Google Scholar 

  33. Amanuma K., Hase T., and Miyasaka Y., Jpn. J. Appl. Phys. 33, 5211 (1994)

    Article  CAS  Google Scholar 

  34. Lee J. K., Song T. K., and Jung H. Y., Integ. Ferroelec. 15, 115 (1997)

    Article  CAS  Google Scholar 

  35. Paek S. H., Park C. S., Won J. H., and Lee K. S., MRS Proc. 443, 33 (1996)

    Article  Google Scholar 

  36. Yamamichi S. et al., IEEE IEDM (1995) p.119

    Google Scholar 

  37. Yang C.-H., Park S.-S., and Yoon S.-G., Integ. Ferroelec. 18, 377 (1997)

    Article  Google Scholar 

  38. Kalkur T. S. et al., Integ. Ferroelec. 1, 327 (1992);

    Article  Google Scholar 

  39. Kalkur T. S. et al., MRS Proc. 230, 315 (1992);

    Article  CAS  Google Scholar 

  40. Kalkur T. S. et al., Integ. Ferroelec. 5, 177 (1994)

    Article  CAS  Google Scholar 

  41. de Keijser M., Dormans G. J. M., and Larsen P. K., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.485

    Google Scholar 

  42. Burn I., US Patent #4,120,677 (1978)

    Google Scholar 

  43. Sakashita et al., Appl. Phys. Lett. 73, 7857 (1993);

    CAS  Google Scholar 

  44. Sakashita et al., J. Appl. Phys. 57, 2431 (1990)

    Google Scholar 

  45. Mazure C., IEEE ISAF (Lausanne, Sept. 1998)

    Google Scholar 

  46. Gardiner R., Brown D. W., Kirlin S. P., and Rheingold A. L., Chem. Mater. 3, 1053 (1991);

    Article  CAS  Google Scholar 

  47. Lesaicherre P.-Y., Ferroelec. Newsletter 2, 15 (1994);

    Google Scholar 

  48. Lesaicherre P.-Y., Oyo Butsuri Gakkai 41 15 (1994)

    Google Scholar 

  49. Kirlin P., Bilodeau S., and Van Buskirk P., Integ. Ferroelec. 7, 307 (1995); Yuuki A. et al., IEEE IEDM (1995) p.115

    Article  CAS  Google Scholar 

  50. Eguchi K. and Kiyotoshi M., Integ. Ferroelec. 14, 33 (1997)

    Article  CAS  Google Scholar 

  51. Kim N. G., Yoon S. G., Lee W. J., and Kim H. G., Integ. Ferroelec. 14, 105 (1997)

    Article  CAS  Google Scholar 

  52. No K. et al., MRS Proc. 443, 9 (1996)

    Article  Google Scholar 

  53. Kato Y. et al., MRS Proc. 443, 3 (1996);

    Article  Google Scholar 

  54. Neumayer D. A. et al., Integ. Ferroelec. 18, 297 (1997)

    Article  CAS  Google Scholar 

  55. Kessler V. G. et al., Chem. Mater. 6, 2336 (1994);

    Article  CAS  Google Scholar 

  56. Lindner J. et al., J. Phys. IV France 8, 247 (1998)

    Article  Google Scholar 

  57. Kaiser D. L., Vaudin M. D., et al., J. Mater. Res. (1999 in press); Dedyk A. I. et al., J. Phys. IV France 8, 217 (1998).

    Article  Google Scholar 

  58. Watanabe K. et al., Appl. Phys. Lett. 73, 126 (1998);

    Article  CAS  Google Scholar 

  59. Atsuki T., Soyama N., Yonezawa T., and Ogi K., Jpn. J. Appl. Phys. 34, 5096 (1995);

    Article  CAS  Google Scholar 

  60. Noguchi T., Hase T., and Miyasaka Y., Jpn. J. Appl. Phys. 35, 4900 (1996)

    Article  CAS  Google Scholar 

  61. McMillan L. D., Araujo C. A., Roberts T., Cuchiaro J., Scott M. C., and Scott J. F., Integ. Ferroelec. 1, 351 (1992);

    Google Scholar 

  62. Solayappan et al., Integ. Ferroelec. 18, 127 (1997)

    Article  CAS  Google Scholar 

  63. Huffman M., Integ. Ferroelec. 10, 39 (1995)

    Article  CAS  Google Scholar 

  64. Solayappan N. et al., Integ. Ferroelec. 14, 237 (1997)

    Article  CAS  Google Scholar 

  65. Scott J. F., Ferroelec. Rev. 1, 1 (1998)

    Article  CAS  Google Scholar 

  66. Bai G.-R. et al., Integ. Ferroelec. 21, 291 (1998)

    Article  CAS  Google Scholar 

  67. Takemura K. et al., Appl. Phys. Lett. 64, 2967 (1994);

    Article  CAS  Google Scholar 

  68. Takemura K. et al.,Jpn. J. Appl. Phys. 34, 5224 (1995)

    Article  CAS  Google Scholar 

  69. Jia Q. X. et al., Integ. Ferroelec. 19, 111 (1998)

    Article  CAS  Google Scholar 

  70. Dey S. K. and Alluri P. V., MRS Bull. 21, 44 (1996)

    CAS  Google Scholar 

  71. Auciello O., Dat R., and Ramesh R., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.525

    Google Scholar 

  72. Shimizu M., Katayama T., Shiosaki T. and Kawabata A., ISAF Proc. (IEEE, New York, 1990) p.669;

    Google Scholar 

  73. Petuskey W. T., Richardson D. A., and Dey S. K., Integ. Ferroelec. 2, 269 (1992);

    Article  CAS  Google Scholar 

  74. de Keijser M., Dormans G. J. H., and Larsen P. K., Ferroelectric Thin Films, eds. Paz de Araujo C. A., Scott J. F., and Taylor G. W. (Gordon & Breach, New York, 1996) p.485

    Google Scholar 

  75. Chrisey D. B. and Huber G. K., Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994); Maher G. H., US Patent #4,266,265 (1979)

    Google Scholar 

  76. Roy D., Peng J. and Krupanidhi S. B., Appl. Phys. Lett. 60, 2478 (1992)

    Article  CAS  Google Scholar 

  77. Rarnesh R. et al., Science 252, 944 (1991)

    Article  Google Scholar 

  78. Lin H. et al., Integ. Ferroelec. 5, 197 (1994)

    Article  CAS  Google Scholar 

  79. Lee J., Ramesh R. et al., Integ. Ferroelec. 5, 145 (1994)

    Article  CAS  Google Scholar 

  80. Suga M. et al., Integ. Ferroelec. 18, 389 (1997)

    Article  CAS  Google Scholar 

  81. Pignolet A. et al., Integ. Ferroelec. 22, 485 (1998); Integ. Ferroelec. 24 (in press 1999);

    Article  Google Scholar 

  82. Pignolet A. et al., MRS Proc. 433, 125 (1996);

    Article  CAS  Google Scholar 

  83. Pignolet A. et al., J. Phys. IV France 8, 251 (1998); Matsumuro Y., Sugiyama H., Noda M., and Okuyama M. (in press)

    Article  Google Scholar 

  84. Fujii E. et al., Int. Elec. Dev. Meeting (IEDM) (1992) p.267

    Google Scholar 

  85. Noma A. and Ueda D., Integ. Ferroelec. 15, 69 (1997)

    Article  CAS  Google Scholar 

  86. Gutleben C. D., MRS Proc. 433, 109 (1996); MRS Proc. (1999 in press)

    Article  CAS  Google Scholar 

  87. McKee R. et al., Phys. Rev. Lett. 81, 3017 (1998);

    Article  Google Scholar 

  88. Alexe M., Physics World 12, 21 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, J.F. (2000). Deposition and Processing. In: Ferroelectric Memories. Springer Series in Advanced Microelectronics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04307-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04307-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08565-9

  • Online ISBN: 978-3-662-04307-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics