Deposition and Processing

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

A variety of deposition techniques are employed for ferroelectric thin film capacitors to be used in memory devices. These include sputtering [382], MOCVD (Metal-Organic Chemical Vapour Deposition) [383], MOD (MetalOrganic Decomposition) [384], PLD (Pulsed Laser Deposition) [385], solgel (solution—gelation) spin-on techniques [386], and a mist deposition in which stoichiometrically correct submicron droplets are sprayed into the deposition chamber [387]. The MOCVD techniques include a flash process [388, 389, 390, 391, 392] in which the precursor solutions are delivered to the deposition chamber in liquid form (due to their low volatilities) and then flashed into the vapour phase via incandescent lights or laser sources at a shower head delivery point just below the wafer. These flash systems all differ from each other (Isobe’s achieves the highest deposition rate), and all have separate patents. What they share is the ability to handle viscous precursors with low vapour pressures. [The LG Semiconductor Corp. flash process for BST utilizes relatively viscous barium- and strontium-(THD)2-tetraglyme, together with Ti(O-iso-Pr)(THD)2.] True CVD is not used; that is, vapour deposition with chloride or hydride precursors, since halogen contamination is a problem. MBE (Molecular Beam Epitaxy) is generally not used, with one or two research exceptions [393]. And thick film techniques such as spray pyrolysis, slip-casting, etc., are not used.

Keywords

Fatigue Zirconium Titanate Pyrolysis Vanadium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 382.
    Amanuma K., Hase T., and Miyasaka Y., Jpn. J. Appl. Phys. 33, 5211 (1994)CrossRefGoogle Scholar
  2. 383.
    De Keijser M. et al., Ferroelectric Thin Films, eds. C. Paz de Araujo, J. F. Scott, and G. W. Taylor (Gordon & Breach, New York, 1996) p.485Google Scholar
  3. 384.
    Fujii E. et al., Int. Elec. Dey. Meeting (IEDM) (1992) p.267Google Scholar
  4. 385.
    Auciello O., Dat R. and Ramesh R., Ferroelectric Thin Films, eds. C. Araujo, J. F. Scott, and G. W. Taylor (Gordon & Breach, New York, 1996) p.525Google Scholar
  5. 386.
    Paz de Araujo C. A., McMillan L. D., and Scott J. F., MRS Proc. 230, 277 (1991)Google Scholar
  6. 387.
    McMillan L. D., et al., Integ. Ferroelec. 2, 351 (1992)Google Scholar
  7. 388.
    Isobe C. et al., International Symposium of Integrated Ferroelectrics, Santa Fe, New Mexico, March 1997;Google Scholar
  8. 388a.
    Isobe C. et al., Integ. Ferroelec. 14, 95 (1997)CrossRefGoogle Scholar
  9. 389.
    Ami T., Hironaka K. et al., MRS Proc. 415, 195 (1996)CrossRefGoogle Scholar
  10. 390.
    Tao W., Desu S. B., and Li T. K., Mater. Lett. 23, 177 (1995)CrossRefGoogle Scholar
  11. 391.
    Li T. K. et al., Appl. Phys. Lett. 68, 616 (1996);CrossRefGoogle Scholar
  12. 391a.
    Li T. K. et al., MRS Proc. 415, 189 (1996)CrossRefGoogle Scholar
  13. 392.
    Kim D. C., Jo W., Lee H. M., and Kim K. Y., Integ. Ferroelec. 18, 137 (1997)CrossRefGoogle Scholar
  14. 393.
    Gutleben C. D., Appl. Phys. Lett. 71, 3444 (1997);CrossRefGoogle Scholar
  15. 393a.
    McKee R. et al., Phys. Rev. Lett. 81, 3017 (1998);CrossRefGoogle Scholar
  16. 393b.
    Alexe M., Physics World 12, 21 (1999)Google Scholar
  17. 394.
    Schwee L., private communication (1986)Google Scholar
  18. 395.
    Fleddermann C., Integ. Ferroelec. 5, 29 (1994);CrossRefGoogle Scholar
  19. 395a.
    Uchida H., Soyama N., Kageyama K., Ogi K., and Paz de Araujo C. A., FMA-13 Conf., Kyoto (1996), p.193;Google Scholar
  20. 395b.
    Faure S. P., Chaux O., and Gaucher P., J. Phys. IV France 8, 60 (1998)Google Scholar
  21. 396.
    Turova N. Ya.and Yanovskaya M. I., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.233; Hanold R. C. F., U. S. Patent #4,081,857 (1975)Google Scholar
  22. 397.
    Kato K., Integ. Ferroelec. 22, 13 (1998)CrossRefGoogle Scholar
  23. 398.
    Dey S. K., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.329Google Scholar
  24. 399.
    Auciello O., Kraus A. R., and Gifford K. D., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.393Google Scholar
  25. 400.
    Krupanidhi S. B., Hu H., and Fox G. R., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.427Google Scholar
  26. 401.
    Iijima K., et al., J. Appl. Phys. 60, 361 (1986);CrossRefGoogle Scholar
  27. 401a.
    Iijima K., et al., J. Appl. Phys. 60, 2914 (1986)CrossRefGoogle Scholar
  28. 402.
    Adachi H., Mitsuyu T., Yamazaki O., and Wasa K., J. Appl. Phys. 60, 736 (1986)CrossRefGoogle Scholar
  29. 403.
    Sreenivas K. et al., J. Appl. Phys. 61, 411 (1987);CrossRefGoogle Scholar
  30. 403a.
    Sreenivas K. et al., Appl. Phys. Lett. 52, 709 (1988);CrossRefGoogle Scholar
  31. 403b.
    Sreenivas K. et al., Thin Solid Films 172, 251 (1989)CrossRefGoogle Scholar
  32. 404.
    Matsubara M. et al., MRS Proc. 200, 243 (1990); 243, 281 (1992)CrossRefGoogle Scholar
  33. 405.
    Amanuma K., Hase T., and Miyasaka Y., Jpn. J. Appl. Phys. 33, 5211 (1994)CrossRefGoogle Scholar
  34. 406.
    Lee J. K., Song T. K., and Jung H. Y., Integ. Ferroelec. 15, 115 (1997)CrossRefGoogle Scholar
  35. 407.
    Paek S. H., Park C. S., Won J. H., and Lee K. S., MRS Proc. 443, 33 (1996)CrossRefGoogle Scholar
  36. 408.
    Yamamichi S. et al., IEEE IEDM (1995) p.119Google Scholar
  37. 409.
    Yang C.-H., Park S.-S., and Yoon S.-G., Integ. Ferroelec. 18, 377 (1997)CrossRefGoogle Scholar
  38. 410.
    Kalkur T. S. et al., Integ. Ferroelec. 1, 327 (1992);CrossRefGoogle Scholar
  39. 410a.
    Kalkur T. S. et al., MRS Proc. 230, 315 (1992);CrossRefGoogle Scholar
  40. 410b.
    Kalkur T. S. et al., Integ. Ferroelec. 5, 177 (1994)CrossRefGoogle Scholar
  41. 411.
    de Keijser M., Dormans G. J. M., and Larsen P. K., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.485Google Scholar
  42. 412.
    Burn I., US Patent #4,120,677 (1978)Google Scholar
  43. 413.
    Sakashita et al., Appl. Phys. Lett. 73, 7857 (1993);Google Scholar
  44. 413a.
    Sakashita et al., J. Appl. Phys. 57, 2431 (1990)Google Scholar
  45. 414.
    Mazure C., IEEE ISAF (Lausanne, Sept. 1998)Google Scholar
  46. 415.
    Gardiner R., Brown D. W., Kirlin S. P., and Rheingold A. L., Chem. Mater. 3, 1053 (1991);CrossRefGoogle Scholar
  47. 415a.
    Lesaicherre P.-Y., Ferroelec. Newsletter 2, 15 (1994);Google Scholar
  48. 415b.
    Lesaicherre P.-Y., Oyo Butsuri Gakkai 41 15 (1994)Google Scholar
  49. 416.
    Kirlin P., Bilodeau S., and Van Buskirk P., Integ. Ferroelec. 7, 307 (1995); Yuuki A. et al., IEEE IEDM (1995) p.115CrossRefGoogle Scholar
  50. 417.
    Eguchi K. and Kiyotoshi M., Integ. Ferroelec. 14, 33 (1997)CrossRefGoogle Scholar
  51. 418.
    Kim N. G., Yoon S. G., Lee W. J., and Kim H. G., Integ. Ferroelec. 14, 105 (1997)CrossRefGoogle Scholar
  52. 419.
    No K. et al., MRS Proc. 443, 9 (1996)CrossRefGoogle Scholar
  53. 420.
    Kato Y. et al., MRS Proc. 443, 3 (1996);CrossRefGoogle Scholar
  54. 420a.
    Neumayer D. A. et al., Integ. Ferroelec. 18, 297 (1997)CrossRefGoogle Scholar
  55. 421.
    Kessler V. G. et al., Chem. Mater. 6, 2336 (1994);CrossRefGoogle Scholar
  56. 421a.
    Lindner J. et al., J. Phys. IV France 8, 247 (1998)CrossRefGoogle Scholar
  57. 422.
    Kaiser D. L., Vaudin M. D., et al., J. Mater. Res. (1999 in press); Dedyk A. I. et al., J. Phys. IV France 8, 217 (1998).CrossRefGoogle Scholar
  58. 422a.
    Watanabe K. et al., Appl. Phys. Lett. 73, 126 (1998);CrossRefGoogle Scholar
  59. 422b.
    Atsuki T., Soyama N., Yonezawa T., and Ogi K., Jpn. J. Appl. Phys. 34, 5096 (1995);CrossRefGoogle Scholar
  60. 422c.
    Noguchi T., Hase T., and Miyasaka Y., Jpn. J. Appl. Phys. 35, 4900 (1996)CrossRefGoogle Scholar
  61. 423.
    McMillan L. D., Araujo C. A., Roberts T., Cuchiaro J., Scott M. C., and Scott J. F., Integ. Ferroelec. 1, 351 (1992);Google Scholar
  62. 423a.
    Solayappan et al., Integ. Ferroelec. 18, 127 (1997)CrossRefGoogle Scholar
  63. 424.
    Huffman M., Integ. Ferroelec. 10, 39 (1995)CrossRefGoogle Scholar
  64. 425.
    Solayappan N. et al., Integ. Ferroelec. 14, 237 (1997)CrossRefGoogle Scholar
  65. 426.
    Scott J. F., Ferroelec. Rev. 1, 1 (1998)CrossRefGoogle Scholar
  66. 427.
    Bai G.-R. et al., Integ. Ferroelec. 21, 291 (1998)CrossRefGoogle Scholar
  67. 428.
    Takemura K. et al., Appl. Phys. Lett. 64, 2967 (1994);CrossRefGoogle Scholar
  68. 428a.
    Takemura K. et al.,Jpn. J. Appl. Phys. 34, 5224 (1995)CrossRefGoogle Scholar
  69. 429.
    Jia Q. X. et al., Integ. Ferroelec. 19, 111 (1998)CrossRefGoogle Scholar
  70. 430.
    Dey S. K. and Alluri P. V., MRS Bull. 21, 44 (1996)Google Scholar
  71. 431.
    Auciello O., Dat R., and Ramesh R., Ferroelectric Thin Films, eds. Paz de Araujo C., Scott J. F. and Taylor G. W. (Gordon & Breach, New York, 1996) p.525Google Scholar
  72. 432.
    Shimizu M., Katayama T., Shiosaki T. and Kawabata A., ISAF Proc. (IEEE, New York, 1990) p.669;Google Scholar
  73. 432a.
    Petuskey W. T., Richardson D. A., and Dey S. K., Integ. Ferroelec. 2, 269 (1992);CrossRefGoogle Scholar
  74. 432b.
    de Keijser M., Dormans G. J. H., and Larsen P. K., Ferroelectric Thin Films, eds. Paz de Araujo C. A., Scott J. F., and Taylor G. W. (Gordon & Breach, New York, 1996) p.485Google Scholar
  75. 433.
    Chrisey D. B. and Huber G. K., Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994); Maher G. H., US Patent #4,266,265 (1979)Google Scholar
  76. 434.
    Roy D., Peng J. and Krupanidhi S. B., Appl. Phys. Lett. 60, 2478 (1992)CrossRefGoogle Scholar
  77. 435.
    Rarnesh R. et al., Science 252, 944 (1991)CrossRefGoogle Scholar
  78. 436.
    Lin H. et al., Integ. Ferroelec. 5, 197 (1994)CrossRefGoogle Scholar
  79. 437.
    Lee J., Ramesh R. et al., Integ. Ferroelec. 5, 145 (1994)CrossRefGoogle Scholar
  80. 438.
    Suga M. et al., Integ. Ferroelec. 18, 389 (1997)CrossRefGoogle Scholar
  81. 439.
    Pignolet A. et al., Integ. Ferroelec. 22, 485 (1998); Integ. Ferroelec. 24 (in press 1999);CrossRefGoogle Scholar
  82. 439a.
    Pignolet A. et al., MRS Proc. 433, 125 (1996);CrossRefGoogle Scholar
  83. 439b.
    Pignolet A. et al., J. Phys. IV France 8, 251 (1998); Matsumuro Y., Sugiyama H., Noda M., and Okuyama M. (in press)CrossRefGoogle Scholar
  84. 440.
    Fujii E. et al., Int. Elec. Dev. Meeting (IEDM) (1992) p.267Google Scholar
  85. 441.
    Noma A. and Ueda D., Integ. Ferroelec. 15, 69 (1997)CrossRefGoogle Scholar
  86. 442.
    Gutleben C. D., MRS Proc. 433, 109 (1996); MRS Proc. (1999 in press)CrossRefGoogle Scholar
  87. 443.
    McKee R. et al., Phys. Rev. Lett. 81, 3017 (1998);CrossRefGoogle Scholar
  88. 443a.
    Alexe M., Physics World 12, 21 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations