Advertisement

SBT-Family Aurivillius-Phase Layer Structures

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

The Aurivillius layer-structure compounds come in a family consisting of oxides of general formula
$${A^2} + M_x^3 + {M_y}{O_{3z}}$$
(10.1)
where A is an alkaline earth (such as Sr), M3+ is a trivalent metal (usually Bi), M is a +4 or +5 metal (titanium, tantalum, or niobium), and z can range from 3 to 9. The titanates with even z are usually not ferroelectric along the c-axis; they are antiferroelectric [352, 353], as shown by the superlattice diffraction lines in the HREM data of Scott and Ross in Fig. 10.1. The titanate structures with z = 4 and z = 5 are shown in Figs. 10.1 and 10.2 and may be compared with that for z = 2 in Fig. 9.1. The z = 5 (SrBi4Ti4O15) and z = 6 (Sr2Bi4Ti5O18) structures are both ferroelectric at room temperature. It is easy to make these at high temperatures from a room-temperature fluorite structure because, as discussed in the preceding chapter, the Ti—O or Ta—O sixfold coordinated octahedra are already formed in that defective structure, the Ta—O or Ti—O bond lengths are very nearly the same in the two phases, and, as shown by Chen and Yu and by Poignant et al. [354], the Bi2O2 planes easily slide into the space between adjacent MO6 octahedra in these structures. Because Bi2O2 planes are so easy to position between ABO3 perovskite blocks (SrTaO3) in SBT, it has been possible to make artificial superlattices by layering the Bi2O2 externally, as shown by Tabata et al. [354].

Keywords

Barium Titanate Bottom Electrode Lead Titanate Trap Energy Bismuth Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 352.
    Tachiki M. et al., Jpn. J. Appl. Phys. 38, L179 (1996)Google Scholar
  2. 353.
    Reaney I. M., Euroceram V (Aveiro, Sept. 1996) Vol. 1, p.443;Google Scholar
  3. the superlattice diffraction lines for the titanates are also visible in Scott J. F. and Ross F. M., Proc. ECAPD (Bled, Slovenia, August 1996), Ferroelectrics 201, 43 (1997)Google Scholar
  4. 354.
    Poignant F., Trolliard G., and Abelard P., Proc. Electroceramics IV, ed. Waser R. (Augustinus Buchhandlung Verlag, Aachen, 1994) p.639; Yu Z., Chen A. et al., Proc. Eur. Conf. Ceramics (Aveiro, Portugal, Sept. 1996) p.491; Tabata H., Hamada M., and Kawai T., MRS Proc. 401, 73 (1996)Google Scholar
  5. 355.
    Hase T., Noguchi T., and Miyasaka Y., Integ. Ferroelec. 16, 29 (1997);CrossRefGoogle Scholar
  6. Zafar S. et al., J. Appl. Phys. 82, 4469 (1997)CrossRefGoogle Scholar
  7. 356.
    Ami T. et al., MRS Proc. 415, 195 (1995)CrossRefGoogle Scholar
  8. 357.
    Ashida H. et al., Integ. Ferroelec. 21, 97 (1998)CrossRefGoogle Scholar
  9. 358.
    Takatani S., Kushida-Abdelghafar K., and Miki H., Jpn. J. Appl. Phys. 36, L453 (1997)CrossRefGoogle Scholar
  10. 359.
    Fujisaki Y., Kushida-Abdelghafar K., Shimamoto Y., and Miki H., J. Appl. Phys. 82, 341 (1997)CrossRefGoogle Scholar
  11. 360.
    Hartmann A. J., Scott J. F., et al., J. Korean Phys. Soc. 32, S1329 (1998);Google Scholar
  12. Scott J. F., Ferroelec. Rev. 1, 1 (1998)CrossRefGoogle Scholar
  13. 361.
    Jones R. E., Jr., et al., Thin Solid Films 270, 584 (1995)CrossRefGoogle Scholar
  14. 362.
    Miki H., Kushida-Abdelghafar K., Torii K., and Fujisaki Y., Jpn. J. Appl. Phys. 36, 1132 (1997)CrossRefGoogle Scholar
  15. 363.
    Kushida-Abdelghafar K., Miki H., Torii K., and Fujisaki Y., J. Appl. Phys. 69, 3188 (1996)Google Scholar
  16. 364.
    Han J.-P. and Ma T. P., Integ. Ferroelec. 22, 733 (1998)CrossRefGoogle Scholar
  17. 365.
    Warren W. L. et al., J. Appl. Phys. 67, 1426 (1995)Google Scholar
  18. 366.
    Dimos D. et al., J. Appl. Phys. 76, 4305 (1994)CrossRefGoogle Scholar
  19. 367.
    Warren et al., Integ. Ferroelec. 16, 77 (1997)CrossRefGoogle Scholar
  20. 368.
    Al-Shareef H. N., Dimos D., Warren W. L., and Tuttle B. A., Integ. Ferroelec. 15, 53 (1997)CrossRefGoogle Scholar
  21. 369.
    Troeger G., McDonnell-Douglas Corp., private communication cited in Scott J. F., et al., J. Appl. Phys. 70, 382 (1991)CrossRefGoogle Scholar
  22. 370.
    Stannard W. B. et al., Microelectron. Eng. 29, 193 (1995);CrossRefGoogle Scholar
  23. 370a.
    Stannard W. B. et al., Integ. Ferroelec. 9, 245 (1995)CrossRefGoogle Scholar
  24. 371.
    Watanabe K., Scott J. F. et al. Integ. Ferroelec. 22, 241 (1998)CrossRefGoogle Scholar
  25. 372.
    Hartmann A. J., Thurgate S. et al., Appl. Phys. Lett. (1999 in press)Google Scholar
  26. 373.
    Robertson J. and Warren W. L., MRS Proc. 361, 117 (1994)CrossRefGoogle Scholar
  27. 374.
    Smyth D. M., Ann. Rev. Mat. Sci. 15, 329 (1985)CrossRefGoogle Scholar
  28. 375.
    Pintilie L., Alexe M., Pintilie I., and Boierasu I., Ferroelec. 201, 217 (1997).CrossRefGoogle Scholar
  29. 376.
    Kudzin A. Yu., Panchenko T. V., and Yudin S. P., Sov. Phys. Sol. St. 16, 1589 (1974)Google Scholar
  30. 377.
    Pintilie L., Pintilie I., Petre D., Botila T., and Alexe M., Appl. Phys. A (in press 1999); Pintilie L., Alexe M., Pignolet A., and Hesse D., J. Phys. IV France 8, 101 (1998)CrossRefGoogle Scholar
  31. 378.
    Alexe M., Pintilie L., Pintilie I., Pignolet A., Senz S., and Hesse D., MRS Proc. 433, 425 (1996)CrossRefGoogle Scholar
  32. 378a.
    Alexe M., Pintilie L., Pintilie I., Pignolet A., Senz S., and Hesse D., Appl. Phys. Lett. 69, 1571 (1996)CrossRefGoogle Scholar
  33. 379.
    Pintilie L. and Alexe M., J. Eur. Ceram. Soc. 19, 1485 (1999)CrossRefGoogle Scholar
  34. 380.
    Hartmann A. J. et al., Integ. Ferroelec. (1998)Google Scholar
  35. 381.
    Melnick B. M., Abrokwah J., Hallmark J., and Ooms B., Integ. Ferroelec. 15, 221 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations