Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 3))

Abstract

Since ferroelectricity was discovered in 1921 it has been obvious to many scientists and engineers that the two stable polarization states +P and -P could be used to encode the 1 and 0 of the Boolean algebra that forms the basis of memory and logic circuitry in all modern computers. Yet until very recently, this has been unsuccessful. In fact, although ferroelectric materials are used in a wide variety of commercial devices, it has until now always been the case that some other property of the material — especially pyroelectricity or piezoelectricity — is the characteristic actually employed. Ironically, no devices using ferroelectrics have actually required ferroelectricity to work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jona F. and Shirane G., Ferroelectric Crystals (Pergamon, Oxford, 1962)

    Google Scholar 

  2. Fatuzzo E. and Merz W. J. (North-Holland, Amsterdam, 1967)

    Google Scholar 

  3. Mitsui T., Tatsuzaki I., and Nakamura E., An Introduction to the Physics of Ferroelectrics (Maki-Shoten, Tokyo, 1969; English translation: Gordon & Breach, London. 1976)

    Google Scholar 

  4. Megaw H. D., Acta Cryst. 7, 187 (1954)

    Article  CAS  Google Scholar 

  5. Lines M. and Glass A. M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)

    Google Scholar 

  6. Xu Y., Chen C. J., Xu R., and MacKenzie J. D., Ferroelec. 108, 1653 (1990)

    Google Scholar 

  7. Sessler G. M., Electrets (Springer-Verlag, New York, 1987)

    Book  Google Scholar 

  8. Su Q., Rabson T. A., and Robert M., Integ. Ferroelec. 18, 415 (1997)

    Article  CAS  Google Scholar 

  9. A recent review of imprint is Benedetto J. M., Integ. Ferroelec. 15, 29 (1997)

    Article  CAS  Google Scholar 

  10. Landau L. D., Phys. Z. Sowjetunion 11, 26 (1937)

    CAS  Google Scholar 

  11. Devonshire A. F., Phil. Mag. 740, 1040 (1949);

    Google Scholar 

  12. Devonshire A. F., Phil. Mag. 742, 1065 (1951)

    Google Scholar 

  13. de Gennes P. G., Sol. St. Commun. 1, 132 (1963)

    Article  Google Scholar 

  14. Blinc R., Proc. Int. Course on the Theory of Condensed Matter (IAEA, Vienna, 1968), p.395

    Google Scholar 

  15. Nelmes R., Ferroelectrics (in press)

    Google Scholar 

  16. Peercy P. S., Light Scattering in Solids, eds. M. Balkanski, R. C. C. Leite, and S. P. S. Porto (Flammarion, Paris, 1976), p.782

    Google Scholar 

  17. Kozlov G. V., Volkov A. A., Scott J. F., Feldkamp G. E., and Petzelt J., Phys. Rev. B28, 255 (1983)

    Google Scholar 

  18. Windsch W. and Volkel G., Ferroelec. 24, 195 (1980)

    Article  CAS  Google Scholar 

  19. Chen T. and Scott J. F., Phys. Rev. 40, 8978 (1989)

    Article  CAS  Google Scholar 

  20. Scott J. F. and Chen T., Phase Transitions 32, 235 (1991)

    Article  CAS  Google Scholar 

  21. Scott J. F. and Chen T., J. Raman Spec. 21, 761 (1990)

    Article  Google Scholar 

  22. Errandonea G., Phys. Rev. B21, 5221 (1980);

    Article  CAS  Google Scholar 

  23. Scott J. F., Ferroelec. 166, 95 (1995)

    Article  CAS  Google Scholar 

  24. Greer A. L., Habbal F., Scott J. F., and Takahashi T., J. Chem Phys. 73, 5833 (1980)

    Article  CAS  Google Scholar 

  25. Scott J. F., Habbal F., and Zvirgzds J. A., J. Chem. Phys. 72, 2760 (1980);

    Article  CAS  Google Scholar 

  26. Scott J. F., Habbal F., and Zvirgzds J. A., J. Chem. Phys. 69, 4984 (1978)

    Article  Google Scholar 

  27. Cochran W., Adv. Phys. 9, 387 (1960);

    Article  CAS  Google Scholar 

  28. Cochran W., Adv. Phys. 10, 401 (1961);

    Article  CAS  Google Scholar 

  29. Scott J. F., Rev. Mod. Phys. 48, 83 (1975)

    Google Scholar 

  30. Jaynes E. T., PhD thesis, Princeton (1950);

    Google Scholar 

  31. Jaynes E. T., Ferroelectricity (Princeton University Press, 1953);

    Google Scholar 

  32. Wigner E. P., private communication cited by Jaynes; Kristoffel N. and Konsin P., Phys. Stat. Sol. 21, K39 (1967);

    Article  Google Scholar 

  33. Kristoffel N. and Konsin P., Phys. Stat. Sol. 28, 731 (1968);

    Article  Google Scholar 

  34. Kristoffel N. and Konsin P., Sov. Phys. Sol. St. 13, 2113 (1972);

    Google Scholar 

  35. Kristoffel N. and Konsin P., Ferroelectrics 6, 3 (1973)

    Article  Google Scholar 

  36. Griffiths R. B., J. Chem. Phys. 43, 1958 (1965);

    Article  CAS  Google Scholar 

  37. Scott J. F., J. Phys. Soc. Jpn. 58, 4487 (1989)

    Article  CAS  Google Scholar 

  38. Rushbrooke G. S., J. Chem. Phys. 39, 842 (1963);

    Article  CAS  Google Scholar 

  39. Rushbrooke G. S., 43, 3439 (1965)

    Google Scholar 

  40. Scott J. F., J. Phys. Chem. Sol. 57, 1439 (1996)

    Article  CAS  Google Scholar 

  41. Lopez-Echarri A., Tello M. J., and Gili P., Sol. St. Commun. 36, 1021 (1980)

    Article  CAS  Google Scholar 

  42. Reese W., Sol. St. Commun. 7, 969 (1969)

    Article  CAS  Google Scholar 

  43. Scott J. F., Habbal F., and Hidaka M., Phys. Rev. B25, 1805 (1982)

    Google Scholar 

  44. Toledano P. and Toledano J.-C., The Landau Theory of Phase Transitions (World Scientific, Singapore, 1987)

    Google Scholar 

  45. Pompe W., Speck J. S., et al., J. Appl. Phys. 83, 2742 (1998);

    Article  Google Scholar 

  46. Pompe W., Speck J. S., et al., J. Appl. Phys. 83, 2754 (1998);

    Article  Google Scholar 

  47. Pompe W., Speck J. S., et al., J. Appl. Phys. 78, 1696 (1995);

    Article  Google Scholar 

  48. Pompe W., Speck J. S., et al., J. Appl. Phys. 79, 4037 (1996)

    Article  Google Scholar 

  49. Takashige M., Hamazaki S.-I., Fukurai N., and Shimizu F., J. Phys. Soc. Jpn. 6, 1848 (1997) Zybill C. E., Koch F., Wersing W., et al. (in press 1999) . For earlier AFM studies of surface domains in ferroelectric films, see

    Article  Google Scholar 

  50. Gruverman A. et al., Nanotechnology 8, A38 (1997);

    Article  CAS  Google Scholar 

  51. Gruverman A. et al., Appl. Phys. Lett. 69, 3191 (1996); and

    Article  CAS  Google Scholar 

  52. Hidaka T. et al., Appl. Phys. Lett. 68, 2358 (1996)

    Article  CAS  Google Scholar 

  53. Pertsev N. A., Zembiligotov A., and Tagantsev A. K., Ferroelectrics 223, 79 (1999)

    Article  CAS  Google Scholar 

  54. Yamada Y. and Hamaya N., J. Phys. Soc. Jpn. 52, 3466 (1983)

    Article  CAS  Google Scholar 

  55. Viehland D., private communication (1995); Viehland D., Forst D., and Li J.-F. (in press)

    Google Scholar 

  56. Sinharoy S., et al., J. Vac. Sci. Tech. A9, 409 (1991)

    Google Scholar 

  57. Scott J. F., Rep. Prog. Phys. 42, 1055 (1979)

    Article  CAS  Google Scholar 

  58. Batra I. P. and Silverman B. D., Sol. St. Commun. 11, 291 (1972)

    Article  CAS  Google Scholar 

  59. Landauer R., private communication (1987)

    Google Scholar 

  60. Mills D. L., Phys. Rev. B3, 3887 (1971)

    Google Scholar 

  61. Lubensky T. C. and Rubin M. H., Phys. Rev. 12, 3885 (1975)

    Article  Google Scholar 

  62. Tilley D. R. and Zeks B., Sol. St. Commun. 49, 823 (1984)

    Article  Google Scholar 

  63. Zhong W. L., Wang Y. G., and Zhang P. L., Ferroelec. Rev. 1, 131 (1998) give an up-dated comprehensive review; see also

    CAS  Google Scholar 

  64. Qu B., Zhong W., Wang K., and Wang Z., Integ. Ferroelec. 3, 7 (1993)

    Article  CAS  Google Scholar 

  65. Scott J. F. et al., Physica B150, 160 (1988)

    Google Scholar 

  66. Bune A. V., Fridkin V. M., Ducharme S., et al., Nature 391, 874 (1998). There may be a relationship between the domain-free switching in ferroelectric films reported by Bune et al. and the domain-free magnets reported by

    Article  CAS  Google Scholar 

  67. Stamm et al., Science 282, 449 (1998) . Stamm et al. find that the demagnetization field dominates above a critical thickness d* and exchange energy dominates below this size. d* is about 10 monolayers

    Article  CAS  Google Scholar 

  68. Chew K.-H., Osman J., Stamps R. L., Tilley D. R., and Webb J. F., Integ. Ferroelec. 23 (in press 1999)

    Google Scholar 

  69. Katiyar R. S. (private communication)

    Google Scholar 

  70. Watanabe Y. and Sawamura D., Jpn. J. Appl. Phys.36, 153 (1997)

    Google Scholar 

  71. Ishikawa K. et al., Phys. Rev. 151, 378 (1966)

    Article  Google Scholar 

  72. Uchino K., Sadanaga E., and Hirose T., J. Am. Ceram. Soc. 72, 1555 (1989);

    Article  CAS  Google Scholar 

  73. Uchino K., Sadanaga E., and Hirose T., Ferroelec. Lett. 44, 55 (1982)

    CAS  Google Scholar 

  74. Gachigi K., Kumar U., and Dougherty J. P., Ferroelec. 143, 229 (1993)

    Article  CAS  Google Scholar 

  75. Payne D. A., Phys. Rev. B54, 3158 (1996); Frey M. H. and Payne D. A., Ferroelec. (1998 in press); Randall C. A., McCauley D. E., and Cann D. P., Ferroelec. (1998)

    Article  Google Scholar 

  76. Cao W. and Randall C. A., J. Chem. Phys. Sol. 57, 1499 (1996)

    Article  CAS  Google Scholar 

  77. Tanaka M. and Makino Y., Ferroelec. Lett. 24, 13 (1998);

    Article  CAS  Google Scholar 

  78. Tang X. G., Guo H. K., Zhou Q. F., and Zhang J. X., NanoStruc. Mater. 10, 161 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, J.F. (2000). Introduction. In: Ferroelectric Memories. Springer Series in Advanced Microelectronics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04307-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04307-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08565-9

  • Online ISBN: 978-3-662-04307-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics