Advertisement

Introduction

  • James F. Scott
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 3)

Abstract

Since ferroelectricity was discovered in 1921 it has been obvious to many scientists and engineers that the two stable polarization states +P and -P could be used to encode the 1 and 0 of the Boolean algebra that forms the basis of memory and logic circuitry in all modern computers. Yet until very recently, this has been unsuccessful. In fact, although ferroelectric materials are used in a wide variety of commercial devices, it has until now always been the case that some other property of the material — especially pyroelectricity or piezoelectricity — is the characteristic actually employed. Ironically, no devices using ferroelectrics have actually required ferroelectricity to work.

Keywords

Phase Transition Temperature Barium Titanate Ferroelectric Phase Transition Finite Size Effect Tricritical Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jona F. and Shirane G., Ferroelectric Crystals (Pergamon, Oxford, 1962)Google Scholar
  2. 2.
    Fatuzzo E. and Merz W. J. (North-Holland, Amsterdam, 1967)Google Scholar
  3. 3.
    Mitsui T., Tatsuzaki I., and Nakamura E., An Introduction to the Physics of Ferroelectrics (Maki-Shoten, Tokyo, 1969; English translation: Gordon & Breach, London. 1976)Google Scholar
  4. 4.
    Megaw H. D., Acta Cryst. 7, 187 (1954)CrossRefGoogle Scholar
  5. 5.
    Lines M. and Glass A. M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)Google Scholar
  6. 6.
    Xu Y., Chen C. J., Xu R., and MacKenzie J. D., Ferroelec. 108, 1653 (1990)Google Scholar
  7. 7.
    Sessler G. M., Electrets (Springer-Verlag, New York, 1987)CrossRefGoogle Scholar
  8. 8.
    Su Q., Rabson T. A., and Robert M., Integ. Ferroelec. 18, 415 (1997)CrossRefGoogle Scholar
  9. 9.
    A recent review of imprint is Benedetto J. M., Integ. Ferroelec. 15, 29 (1997)CrossRefGoogle Scholar
  10. 10.
    Landau L. D., Phys. Z. Sowjetunion 11, 26 (1937)Google Scholar
  11. 11.
    Devonshire A. F., Phil. Mag. 740, 1040 (1949);Google Scholar
  12. 11a.
    Devonshire A. F., Phil. Mag. 742, 1065 (1951)Google Scholar
  13. 12.
    de Gennes P. G., Sol. St. Commun. 1, 132 (1963)CrossRefGoogle Scholar
  14. 13.
    Blinc R., Proc. Int. Course on the Theory of Condensed Matter (IAEA, Vienna, 1968), p.395Google Scholar
  15. 14.
    Nelmes R., Ferroelectrics (in press)Google Scholar
  16. 15.
    Peercy P. S., Light Scattering in Solids, eds. M. Balkanski, R. C. C. Leite, and S. P. S. Porto (Flammarion, Paris, 1976), p.782Google Scholar
  17. 16.
    Kozlov G. V., Volkov A. A., Scott J. F., Feldkamp G. E., and Petzelt J., Phys. Rev. B28, 255 (1983)Google Scholar
  18. 17.
    Windsch W. and Volkel G., Ferroelec. 24, 195 (1980)CrossRefGoogle Scholar
  19. 18.
    Chen T. and Scott J. F., Phys. Rev. 40, 8978 (1989)CrossRefGoogle Scholar
  20. 19.
    Scott J. F. and Chen T., Phase Transitions 32, 235 (1991)CrossRefGoogle Scholar
  21. 20.
    Scott J. F. and Chen T., J. Raman Spec. 21, 761 (1990)CrossRefGoogle Scholar
  22. 21.
    Errandonea G., Phys. Rev. B21, 5221 (1980);CrossRefGoogle Scholar
  23. 21a.
    Scott J. F., Ferroelec. 166, 95 (1995)CrossRefGoogle Scholar
  24. 22.
    Greer A. L., Habbal F., Scott J. F., and Takahashi T., J. Chem Phys. 73, 5833 (1980)CrossRefGoogle Scholar
  25. 23.
    Scott J. F., Habbal F., and Zvirgzds J. A., J. Chem. Phys. 72, 2760 (1980);CrossRefGoogle Scholar
  26. 23a.
    Scott J. F., Habbal F., and Zvirgzds J. A., J. Chem. Phys. 69, 4984 (1978)CrossRefGoogle Scholar
  27. 24.
    Cochran W., Adv. Phys. 9, 387 (1960);CrossRefGoogle Scholar
  28. 24a.
    Cochran W., Adv. Phys. 10, 401 (1961);CrossRefGoogle Scholar
  29. 24b.
    Scott J. F., Rev. Mod. Phys. 48, 83 (1975)Google Scholar
  30. 24c.
    Jaynes E. T., PhD thesis, Princeton (1950);Google Scholar
  31. 24d.
    Jaynes E. T., Ferroelectricity (Princeton University Press, 1953);Google Scholar
  32. 24e.
    Wigner E. P., private communication cited by Jaynes; Kristoffel N. and Konsin P., Phys. Stat. Sol. 21, K39 (1967);CrossRefGoogle Scholar
  33. 24f.
    Kristoffel N. and Konsin P., Phys. Stat. Sol. 28, 731 (1968);CrossRefGoogle Scholar
  34. 24g.
    Kristoffel N. and Konsin P., Sov. Phys. Sol. St. 13, 2113 (1972);Google Scholar
  35. 24h.
    Kristoffel N. and Konsin P., Ferroelectrics 6, 3 (1973)CrossRefGoogle Scholar
  36. 25.
    Griffiths R. B., J. Chem. Phys. 43, 1958 (1965);CrossRefGoogle Scholar
  37. 25a.
    Scott J. F., J. Phys. Soc. Jpn. 58, 4487 (1989)CrossRefGoogle Scholar
  38. 26.
    Rushbrooke G. S., J. Chem. Phys. 39, 842 (1963);CrossRefGoogle Scholar
  39. 26a.
    Rushbrooke G. S., 43, 3439 (1965)Google Scholar
  40. 27.
    Scott J. F., J. Phys. Chem. Sol. 57, 1439 (1996)CrossRefGoogle Scholar
  41. 28.
    Lopez-Echarri A., Tello M. J., and Gili P., Sol. St. Commun. 36, 1021 (1980)CrossRefGoogle Scholar
  42. 29.
    Reese W., Sol. St. Commun. 7, 969 (1969)CrossRefGoogle Scholar
  43. 30.
    Scott J. F., Habbal F., and Hidaka M., Phys. Rev. B25, 1805 (1982)Google Scholar
  44. 31.
    Toledano P. and Toledano J.-C., The Landau Theory of Phase Transitions (World Scientific, Singapore, 1987)Google Scholar
  45. 32.
    Pompe W., Speck J. S., et al., J. Appl. Phys. 83, 2742 (1998);CrossRefGoogle Scholar
  46. 32a.
    Pompe W., Speck J. S., et al., J. Appl. Phys. 83, 2754 (1998);CrossRefGoogle Scholar
  47. 32b.
    Pompe W., Speck J. S., et al., J. Appl. Phys. 78, 1696 (1995);CrossRefGoogle Scholar
  48. 32c.
    Pompe W., Speck J. S., et al., J. Appl. Phys. 79, 4037 (1996)CrossRefGoogle Scholar
  49. 32d.
    Takashige M., Hamazaki S.-I., Fukurai N., and Shimizu F., J. Phys. Soc. Jpn. 6, 1848 (1997) Zybill C. E., Koch F., Wersing W., et al. (in press 1999) . For earlier AFM studies of surface domains in ferroelectric films, seeCrossRefGoogle Scholar
  50. 32e.
    Gruverman A. et al., Nanotechnology 8, A38 (1997);CrossRefGoogle Scholar
  51. 32f.
    Gruverman A. et al., Appl. Phys. Lett. 69, 3191 (1996); andCrossRefGoogle Scholar
  52. 32g.
    Hidaka T. et al., Appl. Phys. Lett. 68, 2358 (1996)CrossRefGoogle Scholar
  53. 32h.
    Pertsev N. A., Zembiligotov A., and Tagantsev A. K., Ferroelectrics 223, 79 (1999)CrossRefGoogle Scholar
  54. 33.
    Yamada Y. and Hamaya N., J. Phys. Soc. Jpn. 52, 3466 (1983)CrossRefGoogle Scholar
  55. 34.
    Viehland D., private communication (1995); Viehland D., Forst D., and Li J.-F. (in press)Google Scholar
  56. 35.
    Sinharoy S., et al., J. Vac. Sci. Tech. A9, 409 (1991)Google Scholar
  57. 36.
    Scott J. F., Rep. Prog. Phys. 42, 1055 (1979)CrossRefGoogle Scholar
  58. 37.
    Batra I. P. and Silverman B. D., Sol. St. Commun. 11, 291 (1972)CrossRefGoogle Scholar
  59. 38.
    Landauer R., private communication (1987)Google Scholar
  60. 39.
    Mills D. L., Phys. Rev. B3, 3887 (1971)Google Scholar
  61. 40.
    Lubensky T. C. and Rubin M. H., Phys. Rev. 12, 3885 (1975)CrossRefGoogle Scholar
  62. 41.
    Tilley D. R. and Zeks B., Sol. St. Commun. 49, 823 (1984)CrossRefGoogle Scholar
  63. 42.
    Zhong W. L., Wang Y. G., and Zhang P. L., Ferroelec. Rev. 1, 131 (1998) give an up-dated comprehensive review; see alsoGoogle Scholar
  64. 42a.
    Qu B., Zhong W., Wang K., and Wang Z., Integ. Ferroelec. 3, 7 (1993)CrossRefGoogle Scholar
  65. 43.
    Scott J. F. et al., Physica B150, 160 (1988)Google Scholar
  66. 44.
    Bune A. V., Fridkin V. M., Ducharme S., et al., Nature 391, 874 (1998). There may be a relationship between the domain-free switching in ferroelectric films reported by Bune et al. and the domain-free magnets reported byCrossRefGoogle Scholar
  67. 44a.
    Stamm et al., Science 282, 449 (1998) . Stamm et al. find that the demagnetization field dominates above a critical thickness d* and exchange energy dominates below this size. d* is about 10 monolayersCrossRefGoogle Scholar
  68. 45.
    Chew K.-H., Osman J., Stamps R. L., Tilley D. R., and Webb J. F., Integ. Ferroelec. 23 (in press 1999)Google Scholar
  69. 46.
    Katiyar R. S. (private communication)Google Scholar
  70. 47.
    Watanabe Y. and Sawamura D., Jpn. J. Appl. Phys.36, 153 (1997)Google Scholar
  71. 48.
    Ishikawa K. et al., Phys. Rev. 151, 378 (1966)CrossRefGoogle Scholar
  72. 49.
    Uchino K., Sadanaga E., and Hirose T., J. Am. Ceram. Soc. 72, 1555 (1989);CrossRefGoogle Scholar
  73. 49a.
    Uchino K., Sadanaga E., and Hirose T., Ferroelec. Lett. 44, 55 (1982)Google Scholar
  74. 50.
    Gachigi K., Kumar U., and Dougherty J. P., Ferroelec. 143, 229 (1993)CrossRefGoogle Scholar
  75. 51.
    Payne D. A., Phys. Rev. B54, 3158 (1996); Frey M. H. and Payne D. A., Ferroelec. (1998 in press); Randall C. A., McCauley D. E., and Cann D. P., Ferroelec. (1998)CrossRefGoogle Scholar
  76. 51a.
    Cao W. and Randall C. A., J. Chem. Phys. Sol. 57, 1499 (1996)CrossRefGoogle Scholar
  77. 52.
    Tanaka M. and Makino Y., Ferroelec. Lett. 24, 13 (1998);CrossRefGoogle Scholar
  78. 52a.
    Tang X. G., Guo H. K., Zhou Q. F., and Zhang J. X., NanoStruc. Mater. 10, 161 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • James F. Scott
    • 1
  1. 1.Centre for Ferroics, Earth Sciences Dept.Cambridge UniversityCambridgeEngland

Personalised recommendations