Skip to main content

General Principles of Bacteria Electrotransformation: Key Steps

  • Chapter
Electrotransformation of Bacteria

Part of the book series: Springer Lab Manuals ((SLM))

Abstract

Transfer of foreign information in the genome of cells is a key problem in cell biology and biotechnology. Bioelectrochemistry provided a major innovation when in 1982 Neumann introduced the electrotransformation method (Neumann, et al., 1982). The methodology is simple:

  1. 1.

    cells and plasmids are mixed

  2. 2.

    an electric field of high intensity is applied

  3. 3.

    the mixture is incubated to get the expression

  4. 4.

    a selection assay gives the transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, J. E., P. W. Andrew, D. Jones and I. S. Roberts. 1990. Develop-411 ment of an optimized system for electroporation of Listeria species. Lett Appl Microbiol. 10: 179ā€“181

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Allen, S. P. and H. P. Blaschek. 1990. Factors involved in the electroporation-induced transformation of Clostridium perfringens. Ferns Microbiol Lett. 58: 217ā€“220

    CASĀ  Google ScholarĀ 

  • Ankri, S., O. Reyes and G. Leblon. 1996. Improved electro-transformation of Ill highly DNA-restrictive corynebacteria with DNA extracted from starved Escherichia coli. Ferns Microbiol Lett. 140: 247ā€“251

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Anthony, L. S., M. Z. Gu, S. C. Cowley, W. W. Leung and F. E. Nano. 1991. Transformation and allelic replacement in Francisella spp. Journal of General Microbiology. 137: 2697ā€“2703

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Artiguenave, F., R. Vilagines and C. Danglot. 1997. High-efficiency transposon mutagenesis by electroporation of a Pseudomonas fluorescens strain. Ferns Microbiol Lett. 153: 363ā€“369

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Belliveau, B. H. and J. T. Trevors. 1989. Transformation of Bacillus cereus vegetative cells by electroporation. Appl Environ Microbiol. 55: 1649ā€“1652

    CASĀ  Google ScholarĀ 

  • Bowen, B. A. and R. M. Kosslak. 1992. Electrical energy changes conductivity and determines optimal electrotransformation frequency in Gram-negative bacteria. Appl Environ Microbiol. 58: 3292ā€“3296

    CASĀ  Google ScholarĀ 

  • Brigidi, P., E. De Rossi, M. L. Bertarini, G. Riccardi and D. Matteuzzi. 1990. Genetic transformation of intact cells of Bacillus subtilis by electroporation. Ferns Microbiol Lett. 55: 135ā€“138

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Broek, A. V., A. Van Gool and J. Vanderleyden. 1989. Electroporation of Azospirillum brasilense with plasmid DNA. Fems Microbiol Lett. 61: 177ā€“182

    ArticleĀ  Google ScholarĀ 

  • Chan Kwo Chion, C. K. N., R. Duran, A. Arnaud and P. Galzy. 1991. Elecatrotransformation of whole cells of Brevibacterium sp. R312 a nitrile hydratase producing strain: construction of a cloning vector. Ferns Microbiol Lett. 81: 177ā€“184

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chang, D. C., B. M. Chassy, J. A. Saunders and A. E. Sowers. 1992. Guide to electroporation and electrofusion in Academic press, London.

    Google ScholarĀ 

  • Chassy, B. M. and J. L. Flickinger. 1987. Transformation of Lactobacillus casei by electroporation. Ferns Microbiol Lett. 44: 173ā€“177

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chuang, S. E., A. L. Chen and C. C. Chao. 1995. Growth of E. coli at low temperature dramatically increases the transformation frequency by electroporation. Nucleic Acids Res. 23: 1641

    CASĀ  Google ScholarĀ 

  • Cianciotto, N. P. and B. S. Fields. 1992. Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci. 89: 5188ā€“5191

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Clark, R. G., K. J. Cheng, L. B. Selinger and M. F. Hynes. 1994. A conjugative transfer system for the rumen bacterium, Butyrivibrio fibrisolvens, based on Tn916-mediated transfer of the Staphylococcus aureus plasmid pUB110. Plasmid. 32: 295ā€“305

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cocconcelli, P. S., E. Ferrari, F. Rossi and V. Bottazzi. 1992. Plasmid transformation of Ruminococcus albus by means of high-voltage electroporation. Ferns Microbiology Letters. 73: 203ā€“207

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cournoyer, B. and P. Normand. 1992. Relationship between electroporation conditions, electropermeability and respiratory activity for Frankia strain ACN14a. Ferns Microbiol Lett. 73: 95ā€“99

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cutrin, J. M., R. F. Conchas, J. L. Barja and A. E. Toranzo. 1994. Electrotransformation of Yersinia ruckeri by plasmid DNA. Microbiologia. 10: 69ā€“82

    CASĀ  Google ScholarĀ 

  • Cutrin, J. M., A. E. Toranzo and J. L. Barja. 1995. Genetic transformation of Vibrio anguillarum and Pasteurella piscicida by electroporation. Ferns Microbiol Lett. 128: 75ā€“80

    ArticleĀ  CASĀ  Google ScholarĀ 

  • David, S., G. Simons and W. M. De Vos. 1989. Plasmid transformation by electroporation of Leuconostoc paramesenteroides and its use in molecular cloning. Appl Environ Microbiol. 55: 1483ā€“1489

    CASĀ  Google ScholarĀ 

  • Desomer, J., P. Dhaese and M. Van Montagu. 1990. Transformation of Rhodococcus fascians by high voltage electroporation and development of R. fascians cloning vectors. Appl Env Microbiol. 2818ā€“2825

    Google ScholarĀ 

  • Diver, J. M., L. E. Bryan and P. A. Sokol. 1990. Transformation of Pseudomonas aeruginosa by electroporation. Anal Biochem. 189: 75ā€“79

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Donohue, T. J. and S. Kaplan. 1991. Genetic techniques in rhodospirillaceae. Methods Enzymol. 204: 459ā€“485

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dower, W. J., J. F. Miller and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127ā€“6145

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dunny, G. M., L. N. Lee and D. J. LeBlanc. 1991. Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol. 57: 1194ā€“1201

    CASĀ  Google ScholarĀ 

  • Eden, P. A. and R. P. Blakemore. 1991. Electroporation and conjugal plasmid transfer to members of the genus Aquaspirillum. Arch Microbiol. 155: 449ā€“452

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Eynard, N., F. Rodriguez, J. Trotard and J. Teissie. 1998. Electrooptics studies of Escherichia coli electropulsation: orientation, permeabilization, and gene transfer. Biophys J. 75: 2587ā€“2596

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Eynard, N., S. Sixou, N. Duran and J. Teissie. 1992. Fast kinetics studies of Escherichia coli electrotransformation. Eur J Biochem. 209: 431ā€“436

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fiedler, S. and R. Wirth. 1988. Transformation of bacteria with plasmid DNA by electroporation. Anal Biochem. 170: 38ā€“44

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Foissac, X., C. Saillard and J. M. Bove. 1997. Random insertion of transposon Tn4001 in the genome of Spiroplasma citri strain GI13. Plasmid. 37: 80ā€“86

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gilchrist, A. and J. Smit. 1991. Transformation of freshwater and marine caulobacters by electroporation. J Bacteriol. 173: 921ā€“925

    CASĀ  Google ScholarĀ 

  • Gilis, A., P. Corbisier, W. Baeyens, S. Taghavi, M. Mergeay and D. Lelie. 1998. Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34. J Ind Microbiol Biotechnol. 20: 61ā€“68

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Glenn, A. W., F. F. Roberto and T. E. Ward. 1992. Transformation of Acidiphilium by electroporation and conjugation. Can J Microbiol. 38: 387ā€“393

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Grasseschi, H. A. and M. F. Minnick. 1994. Transformation of Bartonella bacilliformis by electroporation. Can J Microbiol. 40: 782ā€“786

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Grones, J. and J. Turna. 1995. Transformation of microorganisms with the plasmid vector with the replicon from pACI from Acetobacter pasteurianus. Biochem Biophys Res Commun. 206: 942ā€“947

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Guerinot, M. L., B. A. Morisseau and T. Klapatch. 1990. Electroporation of Bradyrhizobium japonicum. Mol Gen Genet. 221: 287ā€“290

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hamashima, H., T. Nakano, S. Tamura and T. Arai. 1990. Genetic transformation of Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae non O-1 with plasmid DNA by electroporation. Microbiol Immunol. 34: 703ā€“708

    CASĀ  Google ScholarĀ 

  • Harlander, S. K. 1987. Transformation of Streptococcus lactis by electroporation in Streptococcal genetics ASM, Washington. 229ā€“233

    Google ScholarĀ 

  • Haynes, J. A. and M. G. Britz. 1989. Electrotransformation of Brevibacterium lactofermentum and corynebacterium glutamicum: growth in tween 80 increases transformation frequencies. Fems Microbiol Lett. 61: 329ā€“334

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Haynes, J. A. and M. G. Britz. 1990. The effect of growth conditions of Corynebacterium glutamicum on the transformation frequency obtained by electroporation. J Gen Microbiol. 136: 255ā€“263

    CASĀ  Google ScholarĀ 

  • Hedreyda, C. T., K. K. Lee and D. C. Krause. 1993. Transformation of Mycoplasma pneumoniae with Tn4001 by electroporation. Plasmid. 30: 170ā€“175

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hermans, J., J. G. Boschloo and J. A. M. De Bont. 1990. Transformation de Mycobacterium aurum by electroporation: the use of glycine, lysozyme and isonicotinic acid hydrazide in enhancing transformation efficiency. Fems Microbiol Lett. 72: 221ā€“224

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hommes, N. G., L. A. Sayavedra-Soto and D. J. Arp. 1996. Mutagenesis of hydroxylamine oxidoreductase in Nitrosomonas europaea by transformation and recombination. J Bacteriol. 178: 3710ā€“3714

    CASĀ  Google ScholarĀ 

  • Ito, K., T. Nishida and K. Izaki. 1988. Application of electroporation for transformation in Erwinia carotovora. Agric Biol Chem. 52: 293ā€“294

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jablonski, L., N. Sriranganathan, S. M. Boyle and G. R. Carter. 1992. Conditions for transformation of Pasteurella multocida by electroporation. Microb Pathog. 12: 63ā€“68

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jost, B. H., S. J. Billington and J. G. Songer. 1997. Electroporation-mediated transformation of Arcanobacterium ( Actinomyces) pyogenes. Plasmid. 38: 135ā€“140

    Google ScholarĀ 

  • Katenkamp, U., I. Groth, F. Laplace and H. Malke. 1992. Electrotransformation of the stable L-form of proteus mirabilisā€œ. Fems Microbiol Lett. 94: 19ā€“22

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kimoto, H. and A. Taketo. 1996. Studies on electrotransfer of DNA into Escherichia coli: effect of molecular form of DNA. Biochim. Biophys. Acta, Gene Struct. Expr. 1307: 325ā€“330

    Google ScholarĀ 

  • Kimoto, H. and A. Taketo. 1997. Initial stage of DNA-electrotransfer into E. coli cells. J Biochem. 122: 237ā€“242

    CASĀ  Google ScholarĀ 

  • Klapatch, T. R., M. L. Guerinot and L. R. Lynd. 1996. Electrotransformation of Clostridium thermosaccharolyticum. J Ind Microbiol. 16: 342ā€“347

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Krieg, N. R. and J. G. Holt. 1984. Bergeyā€™s manual of systematic bacteriology in Williams and Wilkins, Baltimore.

    Google ScholarĀ 

  • Kusano, T., K. Sugawara, C. Inoue, T. Takeshima, M. Numata and T. Shiratori. 1992. Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant. J Bacteriol. 174: 6617ā€“6623

    CASĀ  Google ScholarĀ 

  • Leahy, J. G., J. M. Jones-Meehan and R. R. Colwell. 1994. Transformation of acinetobacter calcoaceticus RAG-1 by electroporation. Can J Microbiol. 40: 233ā€“236

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lefrancois, J., M. M. Samrakandi and A. M. Sicard. 1998. Electrotransformation and natural transformation of Streptococcus pneumoniae: requirement of DNA processing for recombination [In Process Citation]. Microbiology. 144: 3061ā€“3068

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li, H. and H. K. Kuramitsu. 1996. Development of a gene transfer system in Treponema denticola by electroporation. Oral Microbiol Immunol. 11: 161ā€“165

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lin, D. and M. J. McBride. 1996. Development of techniques for the genetic manipulation of the gliding bacteria Lysobacter enzymogenes and Lysobacter brunescens. Can J Microbiol. 42: 896ā€“902

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Macneil, D. J. 1987. Introduction of plasmid DNA into Streptomyces lividans by electroporation. Fems Microbiol Lett. 42: 239ā€“244

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mahillon, J., W. Chungjapornchai, J. Decock, S. Dierickx, F. Michiels, M. Peferoen and H. Joos. 1989. Transformation of Bacillus thuringiensis by electroporation. Fems Microbiol Lett. 60: 205ā€“210

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Matsumura, H., A. Takeuchi and Y. Kano. 1997. Construction of Escherichia coli-Bifidobacterium longum shuttle vector transforming B. longum 105-A and 108-A. Biosci Biotechnol Biochem. 61: 1211ā€“1212

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mattanovich, D., F. Ruker, A. C. Machado, M. Laimer, F. Regner, H. Steinkellner, G. Himmler and H. Katinger. 1989. Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res. 17: 6747

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mazy-Servais, C., D. Baczkowski and J. Dusart. 1997. Electroporation of intact cells of Streptomyces parvulus and Streptomyces vinaceus. Fems Microbiol Lett. 151: 135ā€“138

    ArticleĀ  CASĀ  Google ScholarĀ 

  • McCormac, A. C., M. C. Elliott and D. F. Chen. 1998. A simple method for the production of highly competent cells of Agrobacterium for transformation via electroporation. Mol Biotechnol. 9: 155ā€“159

    ArticleĀ  CASĀ  Google ScholarĀ 

  • McDonald, I. R., P. W. Riley, R. J. Sharp and A. J. McCarthy. 1995. Factors affecting the electroporation of Bacillus subtilis. J Appl Bacteriol. 79: 213ā€“218

    ArticleĀ  CASĀ  Google ScholarĀ 

  • McIntyre, D. A. and S. K. Harlander. 1989. Genetic transformation of intact Lactococcus lactis subsp. lactis by high-voltage electroporation. Appl Environ Microbiol. 55: 604ā€“610

    CASĀ  Google ScholarĀ 

  • McIntyre, D. A. and S. K. Harlander. 1989. Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media. Appl Environ Microbiol. 55: 2621ā€“2626

    CASĀ  Google ScholarĀ 

  • McLaughlin, R. E. and J. J. Ferretti. 1995. Electrotransformation of Streptococci. Methods Mol Biol. 47: 185ā€“193

    CASĀ  Google ScholarĀ 

  • Meilhoc, E., J. M. Masson and J. Teissie. 1990. High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology. 8: 223ā€“227

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mercenier, A. and B. M. Chassy. 1988. Strategies for the development of bacterial transformation systems. Biochimie. 70: 503ā€“517

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Micheletti, P. A., K. A. Sment and J. Konisky. 1991. Isolation of a coenzyme M-auxotrophic mutant and transformation by electroporation in Methanococcus voltae. J Bacteriol. 173: 3414ā€“3418

    CASĀ  Google ScholarĀ 

  • Miller, J. F., W. J. Dower and L. S. Tompkins. 1988. High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci U S A. 85: 856ā€“860

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Missich, R., B. Sgorbati and D. J. LeBlanc. 1994. Transformation of Bifido-bacterium longum with pRM2, a constructed Escherichia coli-B. longumshuttle vector. Plasmid. 32: 208ā€“211

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mitchell, M. A., K. Skowronek, L. Kauc and S. H. Goodgal. 1991. Electroporation of Haemophilus influenzae is effective for transformation of plasmid but not chromosomal DNA. Nucleic Acids Res. 19: 3625ā€“3628

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moser, D., D. Zarka, C. Hedman and T. Kallas. 1995. Plasmid and chromosomal DNA recovery by electroextraction of cyanobacteria. Ferns Microbiol Lett. 128: 307ā€“313

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Muhlenhoff, U. and F. Chauvat. 1996. Gene transfer and manipulation in the thermophilic cyanobacterium Synechococcus elongatus. Mol Gen Genet. 252: 93ā€“100

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Neumann, E., M. Schaefer-Ridder, Y. Wang and P. H. Hofschneider. 1982. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1: 841ā€“845

    CASĀ  Google ScholarĀ 

  • Neumann, E., A. E. Sowers and C. A. Jordan. 1989. Electroporation and elec-trofusion in cell biology in Plenum press, New York, London.

    Google ScholarĀ 

  • Oā€™Konski, C. T. and A. J. Haltner. 1957. Electric properties of macromolecules. I. A study of electric polarization in polyelectrolyte solutions by means of electric birefringence. J. Am. Chem. Soc. 79: 5634ā€“5648

    Google ScholarĀ 

  • Ohse, M., K. Kawade and H. Kusaoke. 1997. Effects of DNA topology on transformation efficiency of Bacillus subtilis ISW1214 by electroporation. Biosci Biotechnol Biochem. 61: 1019ā€“1021

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ohse, M., K. Takahashi, Y. Kadowaki and H. Kusaoke. 1995. Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW 1214 with plasmid DNA by electroporation. Biosci Biotechnol Biochem. 59: 1433ā€“1437

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Okamoto, T. and K. Nakamura. 1992. Simple and highly efficient transformation method for Zymomonas mobilis: electroporation. Biosci Biotech Biochem. 56: 833

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Palomar, J. and M. Vinas. 1996. The effect of 0-antigen on transformation efficiency in Serratia marcescens. Microbiologia. 12: 435ā€“438

    CASĀ  Google ScholarĀ 

  • Porter, M. E. and C. J. Dorman. 1997. Virulence gene deletion frequency is increased in Shigella flexneri following conjugation, transduction, and transformation. Ferns Microbiol Lett. 147: 163ā€“172

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Potter, H. 1993. Application of electroporation in recombinant DNA technology. Methods Enzymol. 217: 461ā€“483

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Powell, I. B., M. G. Achen, A. J. Hillier and B. E. Davidson. 1988. A simple and rapid method for genetic transformation of lactic Streptococci by elec.) troporation. Appl Environ Microbiol. 54: 655ā€“660

    CASĀ  Google ScholarĀ 

  • Ramaswamy, S., M. Dworkin and J. Downard. 1997. Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J Bacteriol. 179: 2863ā€“2871

    CASĀ  Google ScholarĀ 

  • Reschke, D. K., M. E. Frazier and L. P. Mallavia. 1991. Transformation and genomic restriction mapping of Rochalimaea spp. Acta Virol. 35: 519ā€“525

    CASĀ  Google ScholarĀ 

  • Rousset, M., L. Casalot, B. J. Rapp-Giles, Z. Dermoun, P. de Philip, J. P. Belaich and J. D. Wall. 1998. New shuttle vectors for the introduction of cloned DNA in Desulfovibrio. Plasmid. 39: 114ā€“122

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sabri, N., B. Pelissier and J. TeissiĆ©. 1996. Transient and stable electrotransformations of intact black Mexican sweet maize cells are obtained after preplasmolysis. Plant Cell Report. 15: 924ā€“928

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Samuels, D. S. 1995. Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol Biol. 47: 253ā€“259

    CASĀ  Google ScholarĀ 

  • Satoh, Y., K. Hatakeyama, K. Kohama, M. Kobayashi, Y. Kurusu and H. Yukawa. 1990. Electrotransformation of intact cells of Brevibacterium flavum MJ-233. J Ind Microbiol. 5: 159ā€“165

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Schenk, S. and R. A. Laddaga. 1992. Improved method for electroporation of Staphylococcus aureus. Fems Microbiol Lett. 73: 133ā€“138

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sheng, Y., V. Mancino and B. Birren. 1995. Transformation of Escherichia coli with large DNA molecules by electroporation. Nucleic Acids Res. 23: 1990ā€“1996

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shepard, B. D. and M. S. Gilmore. 1995. Electroporation and efficient transformation of Enterococcus faecalis grown in high concentrations of glycine. Methods Mol Biol. 47: 217ā€“226

    CASĀ  Google ScholarĀ 

  • Shivarova, N., W. Fƶrster, H. E. Jacob and R. Grigorova. 1983. Microbiological implications of electric field effects. VII. Stimulation of plasmid transformation of Bacillus cereus protoplasts by electric field pulses. Z All Mikrobiol. 23: 595ā€“599

    Google ScholarĀ 

  • Sixou, S., N. Eynard, J. M. Escoubas, E. Werner and J. Teissie. 1991. Optimized conditions for electrotransformation of bacteria are related to the extent of electropermeabilization. Biochim Biophys Acta. 1088: 135ā€“138

    Google ScholarĀ 

  • Sneath, P. H., N. S. Mair, M. E. Sharpe and J. G. Holt. 1986. Bergeyā€™s manual of systematic bacteriology in Williams and Wilkins, Baltimore.

    Google ScholarĀ 

  • Sreenivasan, P. K., D. J. LeBlanc, L. N. Lee and P. Fives-Taylor. 1991. Transformation of Actinobacillus actinomycetemcomitans by electroporation, utilizing constructed shuttle plasmids [published erratum appears in Infect Immun 1992 Apr;60(4):1728]. Infect Immun. 59: 4621ā€“4627

    Google ScholarĀ 

  • Staley, J. T., M. P. Bryant, N. Pfennig and J. G. Holt. 1989. Bergeyā€™s manual of systematic bacteriology in Williams & Wilkins, Baltimore.

    Google ScholarĀ 

  • Strominger, J. L. and J. M. Ghuysen. 1967. Mechanisms of enzymatic bacteriolysis. Cell walls of bacteria are solubilized by action of either specific carbohydrases or specific peptidases. Science. 156: 213ā€“221

    Google ScholarĀ 

  • Sunairi, M., N. Iwabuchi, K. Murakami, F. Watanabe, Y. Ogawa, H. Murooka and M. Nakajima. 1996. Effect of penicillin G on the electroporation of Rhodococcus rhodochrous CF222. Lett Appl Microbiol. 22: 66ā€“69

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Suvorov, A., J. Kok and G. Venema. 1988. Transformation of group A streptococci by electroporation. Ferns Microbiol Lett. 56: 95ā€“100

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Suzuki, K., N. Wakao, Y. Sakurai, T. Kimura, K. Sakka and K. Ohmiya. 1997. Transformation of Escherichia coli with a large plasmid of Acidiphilium multivorum AIU 301 encoding arsenic resistance. Appl Environ Microbiol. 63: 2089ā€“2091

    CASĀ  Google ScholarĀ 

  • Szostkova, M. and D. Horakova. 1998. The effect of plasmid DNA sizes and the other factors on electrotransformation of Escherichia coli JM109. Bioelectrochem. Bioenerg. 47: 319ā€“323

    Google ScholarĀ 

  • Taketo, A. 1988. DNA transfection of Escherichia coli by electroporation. Biochim Biophys Acta. 949: 318ā€“324

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Taketo, A. 1989. Properties of electroporation-mediated DNA transfer in Escherichia coli. J Biochem. 105: 813ā€“817

    CASĀ  Google ScholarĀ 

  • Tatum, F. M., D. C. Morfitt and S. M. Hailing. 1993. Construction of a Brucella abortus RecA mutant and its survival in mice. Microb Pathog. 14: 177ā€“185

    ArticleĀ  CASĀ  Google ScholarĀ 

  • TeissiĆ©, J. and M. P. Rols. 1993. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J. 65: 409ā€“413

    Google ScholarĀ 

  • Thiel, T. and H. Poo. 1989. Transformation of a filamentous cyanobacterium by electroporation. J Bacteriol. 171: 5743ā€“5746

    CASĀ  Google ScholarĀ 

  • Thompson, J. K., K. J. McConville, C. McReynolds and M. A. Collins. 1997. Electrotransformation of Lactobacillus plantarum using linearized plasmid DNA. Lett Appl Microbiol. 25: 419ā€“425

    ArticleĀ  Google ScholarĀ 

  • Thomson, A. M. and H. J. Flint. 1989. Electroporation induced transformation of Bacteroides ruminicola and Bacteroides uniformis by plasmid DNA. Ferns Microbiol Lett. 52: 101ā€“104

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Toro, C. S., G. C. Mora and N. Figueroa-Bossi. 1998. Gene transfer between related bacteria by electrotransformation: mapping Salmonella typhi genes in Salmonella typhimurium. J Bacteriol. 180: 4750ā€“4752

    CASĀ  Google ScholarĀ 

  • Trevors, J. T. 1990. Electroporation and expression of plasmid pBR322 in Klebsiella aerogenes NCTC 418 and plasmid pRK2501 in Pseudomonas putida CYM 318. J Basic Microbiol. 30: 57ā€“61

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tsong, T. Y. 1991. Electroporation of cell membrane. Biophys.J. 60: 297ā€“306

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Valentin, H. E. and D. Dennis. 1996. Application of an optimized electroporation procedure for replacement of the polyhydroxyalkanoate synthase I gene in Nocardia corallina. Can J Microbiol. 42: 715ā€“719

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang, T. W. and Y. H. Tseng. 1992. Electrotransformation ofXanthomonas campestris by RF DNA of filamentous phage phi Lf. Lett Appl Microbiol. 14: 65ā€“68

    ArticleĀ  Google ScholarĀ 

  • Wards, B. J. and D. M. Collins. 1996. Electroporation at elevated temperaWtures substantially improves transformation efficiency of slow-growing mycobacteria. Ferns Microbiol Lett. 145: 101ā€“105

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Williams, S. T., M. E. Sharpe and J. G. Holt. 1989. Bergeyā€™s manual of sysntematic bacteriology in Williams and Wilkins, Baltimore.

    Google ScholarĀ 

  • Xie, T. D., L. Sun and T. Y. Tsong. 1990. Study of mechanisms of electric field-induced DNA transfection. I. DNA entry by surface binding and diffusion through membrane pores. Biophys. J. 58: 13ā€“19

    Google ScholarĀ 

  • Xie, T. D., L. Sun, H. G. Zhao, J. A. Fuchs and T. Y. Tsong. 1992. Study of mechanisms of electric field-induced DNA transfection. IV. Effects of DNA topology on cell uptake and transfection efficiency. Biophys J. 63: 1026ā€“1031

    Google ScholarĀ 

  • Xie, T. D. and T. Y. Tsong. 1990. Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields. Biophys. J. 58: 897ā€“903

    Google ScholarĀ 

  • Xie, T. D. and T. Y. Tsong. 1992. Study of mechanisms of electric field-induced DNA transfection. III. Electric parameters and other conditions for effective transfection. Biophys J. 63: 28ā€“34

    Google ScholarĀ 

  • Yamamoto, N. and T. Takano. 1996. Isolation and characterization of a plasmid from Lactobacillus helveticus CP53. Biosci Biotechnol Biochem. 60: 2069ā€“2070

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yeung, M. K. and C. S. Kozelsky. 1994. Transformation of Actinomyces spp. by a gram-negative broad-host-range plasmid. J Bacteriol. 176: 4173ā€“4176

    CASĀ  Google ScholarĀ 

  • Zealey, G., M. Dion, S. Loosmore, R. Yacoob and M. Klein. 1988. High frequency transformation of Bordetella by electroporation. Fems Microbiol Lett. 56: 123ā€“126

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zimmermann, U. 1982. Electric field mediated fusion and related electrical phenomena. Biochim. Biophys. Acta. 694: 227ā€“277

    Google ScholarĀ 

  • Zimmermann, U. and G. A. Neil. 1996. Electromanipulation of cells in CRC press, N Y, Boca Raton, Florida.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eynard, N., TeissiƩ, J. (2000). General Principles of Bacteria Electrotransformation: Key Steps. In: Eynard, N., TeissiƩ, J. (eds) Electrotransformation of Bacteria. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04305-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04305-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08593-2

  • Online ISBN: 978-3-662-04305-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics