Skip to main content

Modeling Surface Runoff

  • Chapter
Soil Erosion

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

In most climates, soil erosion is governed by the surface runoff of water during excessive rainfalls. Thus, numerical models for the simulation of surface runoff provide a key to quantitative modeling of soil erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams AD, Li G, Parsons AJ (1996) Rill hydraulics on a semiarid hillslope, Southern Arizona. Earth Surface Processes and Landforms 21:35–47

    Article  Google Scholar 

  • De Roo APJ, Wesseling CG, Cremers NHDT, Offermans RJE, Ritsema CJ, Oostindie K van (1994) LISEM: a new physically-based hydrological and soil erosion model in a GIS-environment, theory and implementation. In: Olive LJ, Loughran RJ, Kesby JA (eds) Variability in stream erosion and sediment transport. Int Assoc Hydrol Sci Publ 224, Int Assoc Hydrol Sci Press, Wallingford

    Google Scholar 

  • Emmett WW (1970) The hydraulics of overland flow on hillslopes. US Geol. Survey Paper 662A Giles R (1962) Theory and problems of fluid mechnics and hydraulics. McGraw-Hill Inc

    Google Scholar 

  • Giraldez JV, Woolhiser DA (1996) Analytical integration of the kinematic equation for runoff on a plane under constant rainfall rate and Smith and parlange infiltration. Water Resour Res 32(11):3385–3389

    Article  Google Scholar 

  • Govers G (1992) Relationship between discharge, velocity, and flow area for rills eroding in loose, non-layered material. Earth Surface Processes and Landforms 17:515–528

    Article  Google Scholar 

  • Govindaraju RS, Jones SE, Kavvas ML (1988) On the diffusion wave modeling for overland flow. Water Resour Res 24(5):734–744

    Article  Google Scholar 

  • Green WH, Ampt GA (1911) Studies on soil physics 1: the flow of air and water through soils. J Agr Sci 4:1–24

    Article  Google Scholar 

  • Hergarten S, Neugebauer HJ (1997) Homogenization of Manning’s formula for modeling surface runoff. Geophys Res Letters 24(8): 877–880

    Article  Google Scholar 

  • Knisel WG (1980) CREAMS: a field scale model for chemicals, runoff and erosion from agricultural management systems. USDA-Conserv Res Report 26, Washington, DC

    Google Scholar 

  • Lane LJ, Nearing MA (1989) USDA-water erosion prediction project: hillslope profile model documentation. NSERL Report 2 (USDA-ARS), West Lafayette

    Google Scholar 

  • Morgan RPC, Quinton JN, Rickson RJ (1992) EUROSEM documentation manual. Silsoe College, Silsoe, UK

    Google Scholar 

  • Paul G (1998) Numerische Simulation der Bodenerosion durch Oberflächenabfluss von Wasser auf einem komplexen Relief. Berichte aus der Geowissenschaft, D98, Shaler Verlag, Aachen

    Google Scholar 

  • Paul G, Hergarten S, Neugebauer HJ (1995) Numerische Simulation des Oberflächenabflusses und der Versickerung von Wasser auf einem komplexen Relief. Technical Reports of the SFB350, No. 5, University of Bonn

    Google Scholar 

  • Pearce AJ (1976) Magnitude and frequency of erosion by Hortonian overland flow. J Geol 84:65–80

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids in porous mediums. Physics 1:318–333

    Article  Google Scholar 

  • Schmidt J (1991) A mathematical model to simulate rainfall erosion. In: Bork HR, De Ploey J, Schick AP(eds) Erosion, transport and deposition processes — theory and models. Catena Suppl 19:101–109

    Google Scholar 

  • Schramm M (1994) Ein Bodenerosionsmodell mit räumlich und zeitlich veränderlicher Rillenmorph0logie. Mitt Inst Wasserbau und Kulturtechnik, 190, TH Karlsruhe

    Google Scholar 

  • Smith RE (1992) OPUS: an integrated simulation model for transport of nonpoint-source pollutants at the field scale. I: documentation, USDA-Soil Conserv Service 98, Washington, DC

    Google Scholar 

  • Werner M von (1996) GIS-orientierte Methoden der digitalen Reliefanalyse zur Modellierung von Bodenerosion in kleinen Einzugsgebieten. Dissertation, FU Berlin

    Google Scholar 

  • Woolhiser DA, Smith RE, Goodrich DC (1990) KINEROS, a kinematic runoff and erosion model: documentation and user manual. USDA-ARS-77, Washington, DC

    Google Scholar 

  • Zhang W, Cundy WC (1989) Modeling of two-dimensional overland flow. Water Resour Res 25(9):2019–2035

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hergarten, S., Paul, G., Neugebauer, H.J. (2000). Modeling Surface Runoff. In: Schmidt, J. (eds) Soil Erosion. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04295-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04295-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08605-2

  • Online ISBN: 978-3-662-04295-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics