Skip to main content

WEPP, EUROSEM, E-2D: Results of Applications at the Plot Scale

  • Chapter
Soil Erosion

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Agriculture has a major influence on the state of the environment. Simply due to their share of the land surface, their effects on the regional budgets of energy and matter, and the limited availability of soil fertility as the main resource, agricultural land use systems should be the subject of continuous evaluation and improvement. In the context of the growing importance of soil conservation as a means of sustainable development, fundamental soil erosion research which guides the development and application of predictive simulation systems is a desirable issue because it helps to optimise agricultural production techniques with respect to energy input, soil and nutrient losses, and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AG Boden (1994) Bodenkundliche Kartieranleitung, 4th edn. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Albaladejo J, Castillo V, Martinez-Mena M (1994) EUROSEM: Preliminary validation on non-agricultural soils. In: Rickson RJ (ed) Conserving soil resources: European perspectives. CAB, Wallingford, pp 314–325

    Google Scholar 

  • Alemi MH, Shariari MR, Nielsen D (1988) Kriging and cokriging of soil water properties. Soil Technology 1:117–132

    Article  Google Scholar 

  • Auerswald K (1993) Bodeneigenschaften und Bodenerosion. Relief, Boden, Paläoklima 8. Bornträger, Berlin, 208 p.

    Google Scholar 

  • Bagnold RA (1966) An approach to the sediment transport problem from general physics. US Geological Survey Professional Paper 422-I. US Government Printing Office, Washington DC

    Google Scholar 

  • Beasley RP, Huggins LF, Monke EJ (1980) ANSWERS, a model for watershed planning. Transactions of the American Association of Agricultural Engineers 23:938–944

    Google Scholar 

  • Bennett JP (1974) Concepts of mathematical modeling of sediment yield. Water Resources Research 10:485–492

    Article  Google Scholar 

  • Boardman J, Favis-Mortlock D (eds) (1998) Modelling soil erosion by water. NATO ASI Series I: Gl0bal Environmental Change, Vol. 55. Springer, Berlin

    Google Scholar 

  • Bork H-R, Dalchow C, Kächele H, Piorr H-P, Wenkel K-O (1995) Agrarlandschaftswandel in NordostDeutschland unter veränderten Rahmenbedingungen: ökologische und ökonomische Konsequenzen. Ernst and Sohn, Berlin

    Google Scholar 

  • Bork H-R, Dalchow C, Schatz T, Frielinghaus M, Höhn A, Schmidt R(1997) The soil and sediment profile Bäckerweg in the natural reserve “Märkische Schweiz”, East-Brandenburg, Germany. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 84:327–330

    Google Scholar 

  • Brandt CJ (1989) The size distribution of throughfall drops under vegetation canopies. Catena 16:507–524

    Article  Google Scholar 

  • Brandt CJ (1990) Simulation of the size distribution and erosivity of raindrops and throughfall drops. Earth Surface Processes and Landforms 15:687–698

    Article  Google Scholar 

  • Buchner W, Köller K (1990) Integrierte Bodenbearbeitung. Ulmer, Stuttgart

    Google Scholar 

  • Buchter B, Aina PO, Azari AS, Nielsen D (1991) Soil spatial variability along transects. Soil Technology 4:297–314

    Article  Google Scholar 

  • Campbell GS (1985) Soil physics with BASIC. Elsevier, Amsterdam

    Google Scholar 

  • Chu S-T (1978) Infiltration during an unsteady rain. Water Resources Research 14:461–466

    Article  Google Scholar 

  • Dunne T (1978) Field studies of hillslope flow processes. In: Kirkby MJ (ed) Hillslope hydrology. Wiley, Chichester, pp 227–293

    Google Scholar 

  • Durnford D, King PK (1993) Experimental study of processes and particle-size distributions of eroded soils. Journal of Irrigation and Drainage Engineering 119:383–398

    Article  Google Scholar 

  • Eagleson PS (1970) Dynamic hydrology. McGraw-Hill, New York

    Google Scholar 

  • Elliot WJ, Liebenow AM, Laflen JL, Kohl KD (1989) A compendium of soil erodibility data from WEPP cropland soil field erodibility experiments 1987/88. National Soil Erosion Research Laboratory Rep 3). US Department of Agriculture-Agricultural Research Service, West Lafayette

    Google Scholar 

  • Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial streams. Teckniks Verlag, Copenhagen

    Google Scholar 

  • Everaert W (1991) Empirical relations of the sediment transport capacity of interrill flow. Earth Surface Processes and Landforms 16:513–532

    Article  Google Scholar 

  • Everaert W (1992) Processes of interrill erosion: laboratory experiments. Unpublished Ph.D. thesis. Katholic University, Leuven (in Flemish)

    Google Scholar 

  • FAO (ed) (1994) FAO-Unesco soil map of the world, revised legend reprinted with corrections. World Resources Report 60. FAO, Rome

    Google Scholar 

  • Ferreira VA, Smith RE (1992) OPUS, an integrated simulation model for transport of nonpoint-source pollutants at the field scale, vol. II, user manual. U.S. Department of Agriculture-Agricultural Research Service 90. US Depart Agriculture-Agricultural Research Service, Washington DC

    Google Scholar 

  • Finkner SC, Nearing MA, Foster GR, Gilley JE (1989) A simplified equation for modeling sediment transport capacity. Transactions American Association of Agricultural Engineers 32:1545–1550

    Google Scholar 

  • Flanagan DC (ed) (1994) Water Erosion Prediction Project (WEPP), erosion prediction model version 94.7 user summary. National Soil Erosion Research Laboratory Report 9. US Department of Agriculture-Agricultural Research Service, West Lafayette

    Google Scholar 

  • Flanagan DC, Livingston SJ (eds) (1995) US Department of Agriculture Water Erosion Prediction Project (WEPP) version 95.7, user summary. National Soil Erosion Research Laboratory Report 11. US Department of Agriculture-Agricultural Research Service, West Lafayette

    Google Scholar 

  • Flanagan DC, Nearing MA (eds) (1995) US Department of Agriculture Water Erosion Prediction Project (WEPP) version 95.7, hillslope profile and watershed model documentation. National Soil Erosion Research Laboratory Report 10. US Department of Agriculture-Agricultural Research Service, West Lafayette

    Google Scholar 

  • Foster GR, Lane LJ (1987) US Department of Agriculture Water Erosion Prediction Project (WEPP), user requirements. National Soil Erosion Research Laboratory Report 1. US Department of Agriculture-Agricultural Research Service, West Lafayette

    Google Scholar 

  • Foster GR, Meyer DL (1972) A closed-form soil erosion equation for upland areas. In: Shen HW (ed) Sedimentation. Colorado State University, Fort Collins, 12.1–12.19

    Google Scholar 

  • Foster GR, Meyer LD (1975) Mathematical simulation of upland erosion by fundamental soil erosion mechanics. Agricultural Research Service S-40. US Department of Agriculture-Sedimentary Laboratory, Oxford

    Google Scholar 

  • Foster GR, Young RA, Neibling WH (1985) Sediment composition for nonpoint-source pollution analyses. Transactions of the American Association of Agricultural Engineers 28:133–139

    Google Scholar 

  • Fread DL (1993) Flow routing. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, 10.1–10.36

    Google Scholar 

  • Ghidey F, Alberts EE (1994) Interrill erodibility affected by cropping systems and initial soil water content. Transactions of the American Association of Agricultural Engineers 37:1809–1815

    Google Scholar 

  • Govers G (1990) Empirical relationships for the transport capacity of overland flow. In: Walling DE, Yair A, Berkowicz S (eds) Erosion, transport and deposition processes. International Association of Hydrological Sciences Publication 189. Internat Assoc Hydrol Sc Press, Wallingford, 45–63

    Google Scholar 

  • Govers G (1991) Spatial and temporal variations in splash detachment: a field study. In: Okuda S, Netto A, Slaymaker O(eds) Extreme landforming events. Z Geomorph, N.F., Suppl46. Bornträger, Berlin, 15–24

    Google Scholar 

  • Green WH, Ampt GA (1911) Studies on soil physics I: The flow of air and water through soils. Journal of Agricultural Science 4:1–24

    Article  Google Scholar 

  • Gunn R, Kinzer GD (1949) The terminal velocity of fall for water droplets in stagnant air. Journal of Meteorology 6:243–248

    Article  Google Scholar 

  • Haase G (1978) Leitlinien der bodengeographischen Gliederung Sachsens. Beiträge zur Geographie 29:7–79

    Google Scholar 

  • Horton RE (1933) The role of infiltration in the hydrologic cycle. Transactions of the American Geophysical Union 14:446–460

    Article  Google Scholar 

  • Immler LG, Zahn MT (1994) Die flächenhafte Variabilität bodenphysikalischer Parameter und des Corg-Gehaltes in den Pflugsohlen je eines Ton-, Sand- und Lößstandortes. Zeitschrift für Pflanzenernährung und Bodenkunde 157:251–257

    Article  Google Scholar 

  • Julien PY, Simons DB (1985) Sediment transport capacity of overland flow. In: Transactions of the American Society of Agricultural Engineers 28:555–761

    Google Scholar 

  • Kahnt G (1995) Minimalbodenbearbeitung. Ulmer, Stuttgart

    Google Scholar 

  • Karim MF, Kennedy JF (1983) Computer-based predictors for sediment discharges and friction factors for alluvial streams. Iowa Institute of Hydraulic Research Report 242. University of Iowa, Ankeny

    Google Scholar 

  • Kinnell PIA (1991) The effect of flow depth on sediment transport induced by raindrops impacting shallow flow. Transactions of the American Association of Agricultural Engineers 34:161–168

    Google Scholar 

  • Knisel WG (ed) (1980) CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems. US Department of Agriculture Conservation Research Report 26. US Department of Agriculture-Science and Education Administration, Washington DC

    Google Scholar 

  • Lauren JG, Wagenet RJ, Bouma J, Wosten JHM (1988) Variability of saturated hydraulic conductivity in a Glossaric Hapludalf with macropores. Soil Science 145:20–28

    Article  Google Scholar 

  • Laursen EM (1958) The total sediment load of streams. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers 84

    Google Scholar 

  • Laws JD (1941) Measurements of the fall velocity of water drops and raindrops. Transactions of the American Geophysical Union 21:709–721

    Google Scholar 

  • Laws JD, Parsons DA (1943) The relation of raindrop size to intensity. Transactions of the American Geophysical Union 24:452–460

    Article  Google Scholar 

  • Lieberoth I (1963) Lößsedimentation und Bodenbildung während des Pleistozäns in Sachsen. Geologie 12:149–187

    Google Scholar 

  • Lieberoth I (1982) Bodenkunde, 3rd edn. Deutscher Landwirtschaftsverlag, Berlin

    Google Scholar 

  • Lieberoth I, Czwing E (1989) Weiterentwickelte natürliche Standorteinheiten auf der Grundlage der MMK: Inhalt, Gliederung und Ausgrenzung der Natürlichen Standorteinheiten (NStE neu). Agriculture Exhibition of the GDR, Markkleeberg

    Google Scholar 

  • Mannsfeld K, Richter H (eds) (1995) Naturräume im Sachsen. Forschungen zur Deutschen Landeskunde 238). Zentralausschuß für deutsche Landeskunde, Trier

    Google Scholar 

  • Marshall JS, Palmer WM (1948) The distribution of raindrops with size. Journal of Meterorology 5:165–166

    Article  Google Scholar 

  • McCuen RH (1973) The role of sensitivity analysis in hydraulic modeling. Journal of Hydrology 18:37–53

    Article  Google Scholar 

  • Mein RG, Larson CL (1973) Modeling infiltration during a steady rain. Water Resources Research 9:384–394

    Article  Google Scholar 

  • Merriam RA (1973) Fog drip from artificial leaves in a fog wind tunnel. Water Resources Research 9:1591–1598

    Article  Google Scholar 

  • Meyer LD, Wischmeier WH (1969) Mathematical simulation of the processes of soil erosion by water. In: Transactions of the American Society of Agricultural Engineers 12:754–758, 762

    Google Scholar 

  • Morgan RPC (1994) The European Soil Erosion Model: an update on its structure and research base. In: Rickson RJ (ed) Conserving soil resources: European perspectives. CAB, Wallingford, 286–299

    Google Scholar 

  • Morgan RPC, Rickson RJ (1988) Erosion assessment and modeling. Commission of the European Communities Report EUR 1086o EN. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Morgan RPC, Quinton JN, Rickson RJ (1992) EUROSEM documentation manual, version 1. Silsoe College, Silsoe

    Google Scholar 

  • Morgan RPC, Quinton JN, Rickson RJ (1993) EUROSEM, a user guide, version 2. Silsoe College, Silsoe

    Google Scholar 

  • Nash JE, Sutcliffe V (1970) River flow forecasting through conceptual models I, a discussion of principles. Journal of Hydrology 10:282–290

    Article  Google Scholar 

  • Nearing MA, Deer-Ascough L, Laflen JM (1990) Sensitivity of the WEPP hillslope version soil erosion model. Transactions of the American Association of Agricultural Engineers 33:839–849

    Google Scholar 

  • Onstad CA (1984) Depressional storage on tilled soil surfaces. Transactions of the American Association of Agricultural Engineers 27:729–736

    Google Scholar 

  • Pernecker L, Vollmers HJ (1965) Neue Betrachtungsmöglichkeit des Feststofftransportes in offenen Gerinnen. Die Wasserwirtschaft 55

    Google Scholar 

  • Poesen J (1985) An improved splash transport model. Z Geomorph N.F. 29:193–211

    Google Scholar 

  • Prendergast AG (ed) (1983) Soil erosion. Commission of the European Communities Report EUR 8427 EN. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Rawls WJ, Brakensiek DL (1983) A Procedure to Predict Green and Ampt Infiltration Parameters. In: ASAE Conference on Advances in Infiltration. Am Soc Agricultural Engineers, Chicago 102–112

    Google Scholar 

  • Rawls WJ, Stone JJ, Brakensiek DL (1989) Infiltration. In: Lane LJ, Nearing MA (eds) US Department of Agriculture Water Erosion Prediction Project (WEPP) hillslope profile version, model documentation. National Soil Erosion Research Laboratory Report 2. US Department of Agriculture-Agricultural Research Service, West Lafayette, 4.1–4.12

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture Handbook 703. US Department of Agriculture-Agricultural Research Service, Washington DC

    Google Scholar 

  • Richter H, Haase G, Lieberoth I, Ruske R (1970) Periglazial-Löß-Paläolithikum im Jungpleistozän der Deutschen Demokratischen Republik. Petermanns Geogr Mitt Ergänzungsheft 274. Haack, Gotha

    Google Scholar 

  • Rose CW, Williams JR, Sander GC, Barry DA (1983) A mathematical model of soil erosion and deposition processes I, theory for a plane land element. Soil Sc Soc Am J 47:991–995

    Article  Google Scholar 

  • Schmidt J (1988) Wasserhaushalt und Feststofftransport an geneigten, landwirtschaftlich bearbeiteten Nutzflächen. Unpublished Ph.D. thesis. Department of Geography of the Free University, Berlin

    Google Scholar 

  • Schmidt J (1996) Entwicklung und Anwendung eines physikalisch begründeten Simulationsmodells für die Erosion geneigter, landwirtschaftlicher Nutzflächen. Berliner Geographische Abhandlungen 61. Department of Geography of the Free University, Berlin

    Google Scholar 

  • Schmidt J, Werner M von, Michael A (1996) EROSION-2D: ein Computermodell zur Simulation der Bodenerosion durch Wasser. Sächsische Landesanstalt für Landwirtschaft, Sächsisches Landesamt für Umwelt und Geologie, Dresden Freiberg

    Google Scholar 

  • Schramm M (1994) Ein Erosionsmodell mit räumlich und zeitlich veränderlicher Rillenmorphologie. Institut für Wasserbau und Kulturtechnik Mitteilungen, 190. Technische Hochschule, Karlsruhe

    Google Scholar 

  • Schramm M, Prinz D (1993) Rainfall simulation tests for parameter determination of a soil erosion model. In: Wicherek S (ed) Farm land erosion. Elsevier, Amsterdam, 373–387

    Chapter  Google Scholar 

  • Sharpley AN, Williams JR (eds) (1990a) EPIC: Erosion/Productivity Impact Calculator 1, model documentation. US Department of Agriculture Technical Bulletin 1768. US Department of AgricultureAgricultural Research Service, Washington DC

    Google Scholar 

  • Sharpley AN, Williams JR (eds) (1990b) EPIC: Erosion/Productivity Impact Calculator 2, user manual. US Department of Agriculture Technical Bulletin 1768. US Department of Agriculture-Agricultural Research Service, Washington DC

    Google Scholar 

  • Sisson JB, Wierenga PJ (1981) Spatial variability of steady-state infiltration rates. Soil Science Society of America Journal 45:699–704

    Article  Google Scholar 

  • Smith RE (1992) OPUS, an integrated simulation model for transport of nonpoint-source pollutants at the field scale I, documentation. US Department of Agriculture-Agricultural Research Service 98. US Department of Agriculture-Agricultural Research Service, Washington DC

    Google Scholar 

  • Smith RE, Parlange J-Y (1978) A parameter-efficient hydrologic infiltration model. Water Resources Research 14:533–538

    Article  Google Scholar 

  • Stone JJ, Lane LJ, Shirley ED (1992) Infiltration and runoff simulation on a plane. Transactions of the American Association of Agricultural Engineers 35:161–170

    Google Scholar 

  • Styczen M, Nielsen SA (1989) A view of soil erosion theory, process-research and model building: possible interactions and future developments. Quademi die Scienza del Suolo 2. Firenze

    Google Scholar 

  • Troutman BM (1985) Errors in parameter estimation in precipitation-runoff modeling I, theory. Water Resources Research 21:1195–1213

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44:892–898

    Article  Google Scholar 

  • Vereecken H, Maes J, Feyen J, Darius P (1989) Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Science 148:389–403

    Article  Google Scholar 

  • Vieira SR, Nielsen DR, Biggar JW (1981) Spatial variability of field-measured infiltration rate. Soil Science Society of America Journal 45:1040–1048

    Article  Google Scholar 

  • Werner M von (1995) GIS-orientierte Methoden der digitalen Reliefanalyse zur Modellierung von Bodenerosion in kleinen Einzugsgebieten. Unpubl Ph.D. thesis. Depart Geogr Free Univ Berlin

    Google Scholar 

  • Wan Z, Wang Z (1994) Hyperconcentrated flow. Balkema, Rotterdam

    Google Scholar 

  • Warrick AW, Nielsen DR (1980) Spatial variability of soil physical properties in the field. In: Hillel D (ed) Applications of Soil Physics. Academic Press, New York, 319–344

    Google Scholar 

  • Wischmeier WH, Smith DD (1965) Predicting rainfall erosion losses from cropland east of the Rocky Mountains. Agriculture Handbook 282. US Department of Agriculture, Washington DC

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses — a guide to conservation planning. Agriculture Handbook 537. US Department of Agriculture-Science and Education Administration, Washingtion DC

    Google Scholar 

  • Woolhiser DA, Liggett JA (1967) Unsteady, one-dimensional flow over a plane — the rising hydrograph. Water Resources Research 3:753–771

    Article  Google Scholar 

  • Woolhiser DA, Smith RE, Goodrich DC (1990) KINEROS, a kinematic runoff and erosion model, documentation and user manual. US Department of Agriculture-Agricultural Research Service 77. US Department of Agriculture-Agricultural Research Service, Washington DC

    Google Scholar 

  • Yalin MS (1977) Mechanics of sediment transport, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Yang CT (1973) Incipient motion and sediment transport. Journal of Hydrology 99:1679–1704

    Google Scholar 

  • Yang CT (1979) Unit stream power equations for total load. Journal of Hydrology 49:123–138

    Article  Google Scholar 

  • Young RA, Onstad CA, Bosch DD, Anderson WP (1987) AGNPS, Agricultural Nonpoint Source Pollution Model, a watershed analysis tool. Agricultural Research Service Conservation Research Report 35. US Department of Agriculture-Agricultural Research Service, Washington DC

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, A. (2000). WEPP, EUROSEM, E-2D: Results of Applications at the Plot Scale. In: Schmidt, J. (eds) Soil Erosion. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04295-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04295-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08605-2

  • Online ISBN: 978-3-662-04295-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics