Advertisement

Multidimensional Singular Integral Equations in Plasticity of Isotropic Solids

  • E. G. Ladopoulos
Chapter

Abstract

A large class of plasticity problems can be reduced to the solution of a system of multidimensional singular integral equations. Therefore, it is of interest to evaluate numerically these systems of integral equations of the respective boundary value problem, instead of the problem itself. These numerical techniques discretize the domain of the problem under consideration into a number of elements or cells. The governing equations of the problem are then approximated over the region by functions which fully or partially satisfy the boundary conditions.

Keywords

Finite Element Method Plane Stress Hollow Cylinder Singular Integral Operator Plastic Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Swedlow and T. A. Cruse, Formulation of boundary integral equation for three-dimensional elastoplastic body, Int. J. Solids Struct. 7, 1673 - 1683 (1971).MATHCrossRefGoogle Scholar
  2. 2.
    S. Mukherjee, Corrected boundary integral equation in planar thermoelastoplasticity, Int. J. Solids Struct. 13, 331 - 335 (1977).MATHCrossRefGoogle Scholar
  3. 3.
    A.Mendelson, Boundary-integral methods in elasticity and plasticity, NASA TND 7418 (1973).Google Scholar
  4. 4.
    H. D. Bui, Some remarks about the formulation of three-dimensional thermoelastoplastic problems of integral equations, Int. J. Solids Struct. 14, 935 - 939 (1978).MATHCrossRefGoogle Scholar
  5. 5.
    J. C. F. Telles and C. A. Brebbia, On the application of the boundary element method to plasticity, Appl. Math. Modelling 3, 466 - 470 (1979).MATHCrossRefGoogle Scholar
  6. 6.
    E. G. Ladopoulos, Singular integral representation of three-dimensional plasticity fracture problem, Theor. Appl. Fract. Mech. 8, 205 - 211 (1987).CrossRefGoogle Scholar
  7. 7.
    E. G. Ladopoulos, On the numerical evaluation of the singular integral equations used in two-and three-dimensional plasticity problems, Mech. Res. Commun. 14, 263 - 274 (1987).MATHCrossRefGoogle Scholar
  8. 8.
    E. G. Ladopoulos, Singular integral operators method for two-dimensional plasticity problems, Comp. Struct. 33, 859 - 865 (1989).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    E. G. Ladopoulos, Singular integral operators method for two-dimensional elasto-plastic stress analysis, Forsch. Ingen. 57, 152 - 158 (1991).CrossRefGoogle Scholar
  10. 10.
    E. G. Ladopoulos, V. A. Zisis and D. Krawaritis, Multidimensional singular integral equations in Lp applied to three-dimensional thermoelastoplastic stress analysis, Comp. Struct. 52, 781 - 788 (1994).MATHCrossRefGoogle Scholar
  11. 11.
    O. C. Zienkiewicz, S. Valliappan and I. P. King, Elastoplastic solutions of engineering problems: initial stress finite element approach, Int. J. Numer. Meth. Engng 1, 75 - 100 (1969).MATHCrossRefGoogle Scholar
  12. 12.
    G. C. Nayak and O. C. Zienkiewicz, Elastoplastic stress analysis. A generalization for various constitute relations including strain softening, Int. J. Numer. Meth. Engng 5, 113 - 135 (1972).MATHCrossRefGoogle Scholar
  13. 13.
    W. F. Chen, Limit Analysis and Soil Plasticity, Elsevier, Amsterdam (1975).MATHGoogle Scholar
  14. 14.
    Y. Yamada, N. Yoshimura and T. Sakurai, Plastic stress-strain matrix and its application for the solution of elasto-plastic problems by the finite element method, Int.J. Mech.Sci.10, 343 - 354 (1968).Google Scholar
  15. 15.
    P.V.Marcal and I.P.King, Elastic-plastic analysis of two-dimensional stress systems by the finite element method, Int. J. Mech. Sci. 9, 143 - 155 (1967).CrossRefGoogle Scholar
  16. 16.
    R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, Oxford (1950).MATHGoogle Scholar
  17. 17.
    O. Hoffman and G. Sachs, Introduction to the Theory of Plasticity for Engineers, McGraw - Hill, New York (1953).Google Scholar
  18. 18.
    P.G.Hodge Jr. and G.N.White Jr., A quantitative comparison of flow and deformation theories of plasticity, J. Appl. Mech. 17, 180 - 184 (1950).MathSciNetGoogle Scholar
  19. 19.
    W. T. Koiter, Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with singular yield surface, Q. Appl. Math. 11, 350354 (1953).Google Scholar
  20. 20.
    D. C. Drucker and W. Pruger, Soil mechanics and plastic analysis at limit design, Q. Appl. Mech. 10, 157 - 165 (1952).MATHGoogle Scholar
  21. W. Prager, The theory of plasticity - a survey of recent achievements. James Clayton lecture, Proc. Inst. Mech. Engrs 169, 41-57 (1955).Google Scholar
  22. 22.
    D. N. De G. Allen and R. V. Southwell, Relaxation methods applied to engineering problems. XIV. Plastic straining in two-dimensional stress-systems, Proc. R. Soc. 242A, 379 - 414 (1950).MathSciNetMATHGoogle Scholar
  23. 23.
    W. Johnson and P. B. Mellor, Plasticity for Mechanical Engineers,Van Nostrand, London (1962).Google Scholar
  24. 24.
    W. D. Liam Finn, Applications of limit plasticity in soil mechanics, ASCE J. Soil Mech. Fdns Div. SM 5, Part 1, 101 - 120 (1967).Google Scholar
  25. 25.
    Z. Mroz, Non associated laws in plasticity, J. Mech. Phys. Atmos. 2, 21 - 41 (1963).MathSciNetGoogle Scholar
  26. 26.
    J. N. Goodier and P.G.Hodge Jr., The Mathematical Theory of Elasticity and Plasticity, Wiley, New York (1958).Google Scholar
  27. 27.
    J. H. Argyris, Elasto-plastic matrix displacement analysis of three-dimensional continua, J. R.Aeronaut. Soc. 69, 633 - 635 (1965).Google Scholar
  28. 28.
    G. G. Pope, A Discrete Element Method for Analysis of Plane Elasto-plastic Strain Problems, R. A. F. Farnborough T. R. 65028 (1965).Google Scholar
  29. 29.
    R. von Mises, Mechanik der plastischen formanderung der kristallen, ZAMM 8, 161 - 185 (1928).MATHCrossRefGoogle Scholar
  30. 30.
    J. Casey and P. M. Naghdi, On the characterization of strain-hardening in plasticity, ASMEJ. AppLMech. 48, 285 - 295 (1981).MATHCrossRefGoogle Scholar
  31. 31.
    J. Casey and P. M. Naghdi, On the nonequivalence of the stress space and strain space formulation of plasticity theory, ASME J. Appl. Mech. 50, 350354 (1983).Google Scholar
  32. 32.
    J. Casey and P. M. Naghdi, A remark on the definition of hardening, softening and perfectly plastic behaviour, Acta Mech. 48, 91 - 94 (1983).MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    P. M. Naghdi and J. A. Trapp, The significance of formulating plasticity theory with reference to loading surfaces in strain space, Int. J. Engng Sci. 13, 785797 (1975).Google Scholar
  34. 34.
    P. V. Lade, Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces, Int.J.Solids Struct. 13, 1019 - 1035 (1977).MATHCrossRefGoogle Scholar
  35. 35.
    P. J. Yoder and W. D. Irwan, On the formulation of strain-space plasticity with multiple loading surfaces, ASME J. Appl. Mech. 48, 773 - 778 (1981).MATHCrossRefGoogle Scholar
  36. 36.
    J. H. Prevost, Plasticity theory for soils stress-strain behavior, ASCE J. Engng Mech. 104, 1177 - 1196 (1978).Google Scholar
  37. 37.
    P. K. Banerjee and A. S. Stipho, An elastoplastic model for undrained behavior of heavily overcon-solidated clay, Int. J. Numer. Anal. Meth. Geom. 3, 97103 (1979).Google Scholar
  38. 38.
    P. S. Theocaris and E. Marketos, Elastic-plastic analysis of perforated thin strips of strain-hardening material, J. Mech. Phys. Solids 12, 377 - 390 (1964).CrossRefGoogle Scholar
  39. 39.
    S. F. Reyes and D. U. Deere, Elastic-plastic analysis of underground openings by the finite element method, Proc. 1st Congr. Rock Mechanics, 477-483, Lisbon (1966).Google Scholar
  40. 40.
    A. C. T. Chen and W. F. Chen, Constitutive equations and punch-identation of concrete, Proc. ASCE J. Engng Mech. Div. 101, 889 - 906 (1975).Google Scholar
  41. 41.
    F. John, Plane Waves and Spherical Means Applied to Partial! Differential Equations, Interscience, New York (1955).MATHGoogle Scholar
  42. 42.
    B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, J. Wiley, New York (1960).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • E. G. Ladopoulos
    • 1
  1. 1.Interpaper Research OrganizationUniversity of AthensAthensGreece

Personalised recommendations