Advertisement

Finite-Part Singular Integral Equations

  • E. G. Ladopoulos
Chapter

Abstract

Finite-part singular integral equations are recently widely applicable in many important problems of engineering mechanics, like elasticity, plasticity, fracture mechanics and aerodynamics. The general property of this type of singular integral equations, consists to the generalization of the Cauchy singular integral equations, which have been systematically studied during the last decades.

Keywords

Integral Equation Singular Integral Equation Collocation Point Integration Interval Logarithmic Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hadamard, Lectures on Cauchy ’s Problem in Linear Partial Differential Equations, Yale University Press, Yale (1932).Google Scholar
  2. 2.
    J. Hadamard, Le Probléme de Cauchy et les Équations aux Derivées Partielles Linéaires Hyperboliques, Hermann, Paris (1932).Google Scholar
  3. 3.
    L. Schwartz, Théorie des Distributions, Hermann, Paris (1966).MATHGoogle Scholar
  4. 4.
    H.R Kutt, The numerical evaluation of principle value integrals, by finite-part integration, Num. Math. 24, 205–210 (1975).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    MA Golberg, The convergence of several algorithms for solving integral equations with finite-part integrals, J. Int. Eq. 5, 329–340 (1983).MathSciNetMATHGoogle Scholar
  6. 6.
    M.A Golberg, The numerical solution of Cauchy singular integral equations with constant coefficients, J. Int. Eq. 9, 127–151(1985).MathSciNetGoogle Scholar
  7. 7.
    A.C. Kaya and F. Erdogan, On the solution of integral equations with strongly singular kernels, Q. Appl. Math. 45, 105–122 (1987).MathSciNetMATHGoogle Scholar
  8. 8.
    A.C. Kaya and F. Erdogan, On the solution of integral equations with a generalized Cauchy kernel, Q. Appl. Math. 45, 455–469 (1987).MathSciNetMATHGoogle Scholar
  9. 9.
    E.G. Ladopoulos, On the numerical solution of the finite-part singular integral equations of the first and the second kind used in fracture mechanics, Comp. Meth. Appl. Mech. Engng 65, 253–266 (1987).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    E.G. Ladopoulos, On the numerical evaluation of the general type of finite-part singular integrals and integral equations used in fracture mechanics, J Engng Fract. Mech. 31, 315–337 (1988).CrossRefGoogle Scholar
  11. 11.
    E.G. Ladopoulos, The general type of finite-part singular integrals and integral equations with logarithmic singularities used in fracture mechanics, Acta Mech. 75, 275–285 (1988).MATHCrossRefGoogle Scholar
  12. 12.
    E.G. Ladopoulos, Finite-part singular integro-differential equations arising in two-dimensional aerodynamics, Arch. Mech. 41, 925–936 (1989).MATHGoogle Scholar
  13. 13.
    E.G. Ladopoulos, Systems of finite-part singular integral equations in Lp applied to crack problems, J. Engng Fract. Mech. 48, 257–266 (1994).CrossRefGoogle Scholar
  14. 14.
    E.G. Ladopoulos, New aspects for the generalization of the SokhotskiPlemelj formulae for the solution of finite-part singular integrals used in fracture mechanics, Int. J. Fract. 54, 317–328 (1992).MathSciNetCrossRefGoogle Scholar
  15. 15.
    E.G. Ladopoulos, V.A. Zisis and D. Kravvaritis, Singular integral equations in Hilbert space applied to crack problems, Theor. Appl. Fract. Mech. 9, 271–281 (1988).Google Scholar
  16. 16.
    E.G. Ladopoulos, D. Kravvaritis and V.A Zisis, Finite-part singular integral representation analysis in Lp of two-dimensional elasticity problems, J. Engng Fract. Mech. 43, 445–454 (1992).CrossRefGoogle Scholar
  17. 17.
    A. Harnack, Beiträge zur Theorie des Cauchy’schen Integral, Ber. d k 6 Ges. Wiss., Math. Phys Ch. 37, 379–398 (1885).Google Scholar
  18. 18.
    D. Hilbert, Über eine Anwendung der Integralgleichungen auf ein Problem der Fuktionentheorie, Verhand 3I. Math. Kong., Heidelberg (1904).Google Scholar
  19. 19.
    D.Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Leipzig (1912).Google Scholar
  20. 20.
    H. Poincaré, Lecons de Méchanique Céleste, Vol. 3, Ch. 10, Gauthier et Villars, Paris (1910).Google Scholar
  21. 21.
    J. Plemelj, Ein Ergänzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend, Monat. Math. Phys. 19, 205–210 (1908).MATHCrossRefGoogle Scholar
  22. 22.
    F.N Öther, Über eine Klasse singulärer Integralgleichungen, Math. Annal. 82, 42–63 (1921).Google Scholar
  23. 23.
    N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, The Netherlands (1953).MATHGoogle Scholar
  24. 24.
    N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, The Netherlands (1972).Google Scholar
  25. 25.
    N. Wiener and E. Hopf, Über eine Klasse singulärer Integralgleichungen, Sitz Berl. Akad. Wiss., 696–706 (1931).Google Scholar
  26. 26.
    F.D. Gakhov, On the Rieman boundary value problem, Matem. Sborn. 2, 673–683 (1937).Google Scholar
  27. 27.
    F.D. Gakhov, Boundary Value Problems, Pergamon Press, New York (1966).MATHGoogle Scholar
  28. 28.
    N.P. Vekua, Systems of Singular Integral Equations, Noordhoff, Groningen, The Netherlands (1967).MATHGoogle Scholar
  29. 29.
    V.V. Ivanov, The Theory of Approximate Methods and their Application to the Numerical Solution of Singular Integral Equations, Noordhoff, Leyden, The Netherlands (1976).MATHGoogle Scholar
  30. 30.
    W. Pogorzelski, Integral Equations and their Applications, Vol. 1, Pergamon and PWN-Polish Scientific Publ., Warszawa (1966).MATHGoogle Scholar
  31. 31.
    D. Elliot, Orthogonal polynomials associated with singular integral equations having a Cauchy kernel, SIAM J. Math. Anal. 13, 1041–1052 (1982).MathSciNetCrossRefGoogle Scholar
  32. 32.
    D. Elliot, The classical collocation method for singular integral equations having a Cauchy kernel, SIAM J Numer. Anal. 19, 816–831(1982).Google Scholar
  33. 33.
    F. Erdogan, G.D. Gupta and T.S. Cook, Numerical solution of singular integral equations, in Methods of Analysis and Solutions of Crack Problems (Edited by G.C.Sih), Vol. 1, pp. 368–425, Noordhoff, Leyden, The Netherlands (1973).Google Scholar
  34. 34.
    RP. Gilbert and R. Magnanini, The boundary integral method for two-dimensional orthotropic materials, J. Elasticity 18, 61–82 (1987).MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    G.C. Hsiao, P. Kopp and W.L. Wendland, A Galerkin collocation method for some integral equations of the first kind, Computing 25, 83–130 (1980).MathSciNetCrossRefGoogle Scholar
  36. 36.
    G.C. Hsiao, P. Kopp and W.L. Wendland, Some applications of a Galerkincollocation method for integral equations of the first kind, Math. Meth. Appl. Sci. 6, 280–325 (1984).MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    E.G. Ladopoulos, On the solution of the two-dimensional problem of a plane crack of arbitrary shape in an anisotropic material, J. Engng Fract. Mech. 28, 187–195 (1987).CrossRefGoogle Scholar
  38. 38.
    E.G.Ladopoulos, On a new integration rule with the Gegenbauer polynomials for singular integral equations, used in the theory of elasticity, Ing. Archiv 58, 35–46 (1988).MATHCrossRefGoogle Scholar
  39. 39.
    V.A Zisis and E.G. Ladopoulos, Singular integral approximations in Hilbert spaces for elastic stress analysis in a circular ring with curvilinear cracks, Indus. Math. 39, 113–134 (1989).MathSciNetMATHGoogle Scholar
  40. 40.
    S. Prossdorf, On approximate methods for the solution of one-dimensional singular integral equations, Appl. Anal. 7, 259–270 (1977).MathSciNetGoogle Scholar
  41. 41.
    RP. Srivastav, Numerical solution of singular integral equations using Gauss type formulas-I. Quadrature and collocation on Chebyshev nodes, IMA J. Numer. Anal. 3, 305–318 (1983).MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    A.N. Teong and D.L. Clements, A boundary integral equation method for the solution of a class of crack problems, J. Elasticity 17, 9–21(1987).Google Scholar
  43. 43.
    E. Venturino, Error bounds of the Galerkin method for singular integral equations of the second kind, BIT 25, 413–419 (1985).MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    E. Venturino, Recent developments in the numerical solution of singular integral equations, J. Math. Anal. Applic. 115, 239–277 (1986).MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    P.P. Zabreyko, Integral Equations-A Reference Text, Noordhoff, Leyden, The Netherlands (1975).CrossRefGoogle Scholar
  46. 46.
    U. Zastrow, Solution of the anisotropic elastostatical boundary value problems by singular integral equations, Acta Mech. 44, 59–71 (1982).MATHCrossRefGoogle Scholar
  47. 47.
    U. Zastrow, Numerical plane stress analysis by integral equations based on the singularity method, Solid Mech. Arch. 10, 113–128 (1985).Google Scholar
  48. 48.
    M. Riesz, Sur les fonctions conjuguées, Math. Zeit. 27, 218–244 (1927).MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    A.P. Calderon and A. Zygmound, On the singular integrals, Amer. J. Math. 78, 289–309 (1956).MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Yu. V. Sokhotski, On Definite Integrals and Functions Employed in Expansions into Series, St. Petersburg (1873).Google Scholar
  51. 51.
    J. Plemelj, Ein ergänzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend, Monat. Math. Phys. 19, 205–210 (1908).MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    L. V. Kantorovich and V.I. Krylov, Approximate Methods of Higher Analysis, Gostekhizdat, Moscow (1952).Google Scholar
  53. 53.
    A.H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, New Jersey (1966).MATHGoogle Scholar
  54. 54.
    A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1953).Google Scholar
  55. 55.
    M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1%5).Google Scholar
  56. 56.
    K. Mitchell, Tables of the function \(\int\limits_0^z {\frac{{ - \log (1 - y)}}{{dy}}dy} \), with an account of Y some properties of this and related functions, Philos. Magaz. 40, 355 – 368 (1949).Google Scholar
  57. 57.
    P.K. Suetin, Series in Faber Polynomials, Naukova Dumka, Moscow (1984).Google Scholar
  58. 58.
    I. Gohberg and I.A. Feldman, Convolution Equations and Projection Methods for their Solution, AMS, Trans. Math. Monographs 41, Providence (1974).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • E. G. Ladopoulos
    • 1
  1. 1.Interpaper Research OrganizationUniversity of AthensAthensGreece

Personalised recommendations