Skip to main content

Treatment: Present Status and New Trends

  • Chapter
Inborn Metabolic Diseases

Abstract

Improvements in the understanding of the biochemical and molecular basis of inborn errors have led to significant improvements in our ability to treat many of these disorders. Such improvements, coupled with an ability to make more rapid diagnoses and advances in general medical care, particularly intensive care, are resulting in better long-term prognosis for many patients. However, the rarity of individual disorders has often made it difficult or impossible to obtain sufficient data for evidence-based assessment of treatments. This should be kept in mind when considering the efficacy of particular therapies. Anecdotal reports of improvements should be reviewed critically, but it is equally important to remain open to new advances. This chapter discusses recent progress in the development of treatments. We have also included a list of medications (with recommended dosages) that may be used in the treatment of inborn errors (Table 5.1). Readers should refer to the relevant chapters for detailed information about the management of specific disorders and to Chap. 4, “Psychosocial Care of the Child and Family”, for discussion of the psychological consequences of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta PB, Stepnick Gropper S, Clarke Sheehan N et al. (1987) Trace element status of PKU children ingesting an elemental4diet. JPEN J Parenter Enteral Nutr 11: 287–292

    Article  PubMed  CAS  Google Scholar 

  2. Safos S, Chang TM (1995) Enzyme replacement therapy inENU2 phenylketonuric mice using oral microencapsulated phenylalanine ammonia-lyase: a preliminary report. Artif Cells Blood Substit Immobil Biotechnol 23: 681–692

    Article  PubMed  CAS  Google Scholar 

  3. Brown-Harrison MC, Nada MA, Sprecher H et al. (1996) Very long chain acyl-CoA dehydrogenase deficiency: successful treatment of acute cardiomyopathy. Biochem Mol Med 58: 59–65

    Article  PubMed  CAS  Google Scholar 

  4. Pollitt RJ (1995) Disorders of mitochondrial long-chain fatty acid oxidation. J Inherit Metab Dis 18: 473–490

    Article  PubMed  CAS  Google Scholar 

  5. Morris AA, Clayton PT, Surtees RA et al. (1997) Clinical outcomes in long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. J Pediatr 131: 938

    PubMed  CAS  Google Scholar 

  6. Irons M, Elias ER, Abuelo D et al. (1997) Treatment of SmithLemli-Opitz syndrome: results of a multicenter trial. Am J Med Genet 68: 311–314

    Article  PubMed  CAS  Google Scholar 

  7. Moser HW (1995) Komrower lecture. Adrenoleukodystrophy: natural history, treatment and outcome. J Inherit Metab Dis 18: 435–447

    Article  PubMed  CAS  Google Scholar 

  8. Davies SE, Iles RA, Stacey TE et al. (1991) Carnitine therapy and metabolism in the disorders of propionyl- CoA metabolism studied using 1H-NMR spectroscopy. Clin Chim Acta 204: 263–277

    Article  PubMed  CAS  Google Scholar 

  9. De Sousa C, Chalmers RA, Stacey TE et al. (1986) The response to L-carnitine and glycine therapy in isovaleric acidaemia. Eur J Pediatr 144: 451–456

    Article  PubMed  Google Scholar 

  10. Rutledge SL, Berry GT, Stanley CA et al. (1995) Glycine and L-carnitine therapy in 3-methylcrotonyl-CoA-carboxylase deficiency. J Inherit Metab Dis 18: 299–305

    Article  PubMed  CAS  Google Scholar 

  11. Walter JH (1996) L-Carnitine. Arch Dis Child 74: 475–478

    Article  CAS  Google Scholar 

  12. Waber LJ, Valle D, Neill C et al. (1982) Carnitine deficiency presenting as familial cardiomyopathy: a treatable defect in carnitine transport. J Pediatr 101: 700–705

    Article  PubMed  CAS  Google Scholar 

  13. Igisu H, Matsuoka M, Iryo Y (1995) Protection of the brain by carnitine. Sangyo Eiseigaku Zasshi 37: 75–82

    Article  PubMed  CAS  Google Scholar 

  14. Jaeken J, Detheux M, Van Maldergem L et al. (1996) 3Phosphoglycerate dehydrogenase deficiency: an inborn error of serine biosynthesis. Arch Dis Child 74: 542–545

    Google Scholar 

  15. Vasiliauskas E, Rosenthal P (1994) Is acute fatty liver of pregnancy a metabolic defect? Am J Gastroenterol 89: 1908–1910

    PubMed  CAS  Google Scholar 

  16. Stockler S, Isbrandt D, Hanefeld F et al. (1996) Guanidinoacetate methyltransferase deficiency: the first inborn error of creatinine metabolism in man. Am J Hum Genet 58: 914–922

    PubMed  CAS  Google Scholar 

  17. Sullivan CA, Magann EF, Perry KGJ et al. (1994) The recurrence risk of the syndrome of hemolysis, elevated liver enzymes, and low platelets ( HELLP) in subsequent gestations. Am J Obstet Gynecol 171: 940–943

    Google Scholar 

  18. Bennett MJ, Weinberger MJ, Kobori JA et al. (1996) Mitochondria) short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency: a new defect of fatty acid oxidation. Pediatr Res 39: 185–188

    Article  PubMed  CAS  Google Scholar 

  19. Kreuder J, Otten A, Fuder H et al. (1993) Clinical and biochemical consequences of copper-histidine therapy in Menkes disease. Eur J Pediatr 152: 828–832

    Article  PubMed  CAS  Google Scholar 

  20. Kaler SG, Buist NR, Holmes CS et al. (1995) Early copper therapy in classic Menkes disease patients with a novel splicing mutation. Ann Neurol 38: 921–928

    Article  PubMed  CAS  Google Scholar 

  21. Niehues R, Hasilik M, Alton G et al. (1998) Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 101: 1414–1420

    Google Scholar 

  22. Holme E, Lindstedt S (1998) Tyrosinaemia type I and NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3- cyclohexanedione). J Inherit Metab Dis 21: 507–517

    Article  PubMed  CAS  Google Scholar 

  23. Platt FM, Butters TD (1998) New therapeutic prospects for the glycosphingolipid lysosomal storage diseases. Biochem Pharmacol 56: 421–430

    Article  PubMed  CAS  Google Scholar 

  24. Hamosh A, McDonald JW, Valle D et al. (1992) Dextromethorphan and high-dose benzoate therapy for nonketotic hyperglycinemia in an infant. J Pediatr 121: 131–135

    Article  PubMed  CAS  Google Scholar 

  25. Alemzadeh R, Gammeltoft K, Matteson K (1996) Efficacy of low-dose dextromethorphan in the treatment of nonketotic hyperglycinemia. Pediatrics 97: 924–926

    PubMed  CAS  Google Scholar 

  26. Matsuo S, Inoue F, Takeuchi Y et al. (1995) Efficacy of tryptophan for the treatment of nonketotic hyperglycinemia: a new therapeutic approach for modulating the N- methyl-Daspartate receptor. Pediatrics 95: 142–146

    PubMed  CAS  Google Scholar 

  27. Saitoh S, Momoi MY, Yamagata T et al. (1998) Effects of dichloroacetate in three patients with MELAS. Neurology 50: 531–534

    Article  PubMed  CAS  Google Scholar 

  28. Takanashi J, Sugita K, Tanabe Y et al. (1997) Dichloroacetate treatment in Leigh syndrome caused by mitochondrial DNA mutation. J Neurol Sci 145: 83–86

    Article  PubMed  CAS  Google Scholar 

  29. Elpeleg ON, Ruitenbeek W, Jakobs C et al. (1995) Congenital lacticacidemia caused by lipoamide dehydrogenase deficiency with favorable outcome. J Pediatr 126: 72–74

    Article  PubMed  CAS  Google Scholar 

  30. Stacpoole PW, Barnes CL, Hurbanis MD et al. (1997) Treatment of congenital lactic acidosis with dichloroacetate. Arch Dis Child 77: 535–541

    Article  PubMed  CAS  Google Scholar 

  31. Grabowski GA, Barton NW, Pastores G et al. (1995) Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Intern Med 122: 33–39

    PubMed  CAS  Google Scholar 

  32. Zimran A, Elstein D, Levy-Lahad E et al. (1995) Replacement therapy with imiglucerase for type 1 Gaucher’s disease. Lancet 345: 1479–5480

    Article  PubMed  CAS  Google Scholar 

  33. Allgrove J (1997) Biphosphonates. Arch Dis Child 76, 73–75

    Article  CAS  Google Scholar 

  34. Brady RO, Murray GJ, Oliver KL et al. (1997) Management of neutralizing antibody to ceredase in a patient with type 3 Gaucher disease. Pediatrics 1oo:En

    Google Scholar 

  35. Thomson D (5993) Miracle drug: only $350,000 a year. (Ceredase). Time 141:54–55

    Google Scholar 

  36. Hobbs JR, Hugh-Jones K, Barrett AJ et al. (1981) Reversal of clinical features of Hurler’s disease and biochemical improvement after treatment by bone-marrow transplantation. Lancet 2: 709–712

    Article  PubMed  CAS  Google Scholar 

  37. Peters C, Shapiro EG, Anderson J et al. (1998) Hurler syndrome: II. Outcome of HLA-genotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. The Storage Disease Collaborative Study Group. Blood 95: 2601–2608

    Google Scholar 

  38. Prockop DJ (5997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Google Scholar 

  39. Van’t Hoff WG, Dixon M, Taylor J et al. (1998) Combined liver-kidney transplantation in methylmalonic acidemia. J Pediatr 132: 1043–1044

    Article  Google Scholar 

  40. Jamieson NV, Watts RW, Evans DB et al. (1991) Liver and kidney transplantation in the treatment of primary hyperoxaluria. Transplant Proc 23: 1557–1558

    PubMed  CAS  Google Scholar 

  41. Gruessner RW (1998) Preemptive liver transplantation from a living related donor for primary hyperoxaluria type I. N Engl J Med 338: 1924

    Article  PubMed  CAS  Google Scholar 

  42. Nicolino MP, Puech JP, Kremer EJ et al. (1998) Adenovirusmediated transfer of the acid alpha-glucosidase gene into fibroblasts, myoblasts and myotubes from patients with glycogen-storage disease type II leads to high level expression of enzyme and corrects glycogen accumulation. Hum Mol Genet 7: 1695–1702

    Article  PubMed  CAS  Google Scholar 

  43. Blomer U, Naldini L, Kafri T et al. (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71: 6641–6649

    PubMed  CAS  Google Scholar 

  44. Charache S (1993) Pharmacological modification of hemoglobin F expression in sickle cell anemia: an update on hydroxyurea studies. Experientia 49: 126–132

    Article  PubMed  CAS  Google Scholar 

  45. Dover GJ, Humphries RK, Moore JG et al. (1986) Hydroxyurea induction of hemoglobin F production in sickle cell disease: relationship between cytotoxicity and F cell production. Blood 67: 735–738

    PubMed  CAS  Google Scholar 

  46. Charache S, Dover G, Smith K et al. (1983) Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the yd0-globin gene complex. Proc Natl Acad Sci USA 80: 4842–4846

    Article  PubMed  CAS  Google Scholar 

  47. Rubenstein RC, Egan ME, Zeitlin PL (1997) In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F5o8-CFTR. J Clin Invest 100: 2457–2465

    Article  PubMed  CAS  Google Scholar 

  48. Kemp S, Wei HM, Lu JF et al. (1998) Gene redundancy and pharmacological gene therapy: implications for X-linked adrenoleukodystrophy. Nat Med 4: 1261–1268

    Article  PubMed  CAS  Google Scholar 

  49. Martinez M, Vazquez E (1998) MRI evidence that docosahexaenoic acid ethyl ester improves myelination in generalized peroxisomal disorders. Neurology 51: 26–32

    Article  PubMed  CAS  Google Scholar 

  50. Kjaergaard S, Kristiansson B, Stibler H et al. (1998) Failure of short-term mannose therapy of patients with carbohydrate-deficient glycoprotein syndrome type IA. Acta Paediatr 87: 884–888

    Article  PubMed  CAS  Google Scholar 

  51. Mayatepek E, Schroder M, Kohlmuller D et al. (1997) Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I. Acta Paediatr 86: 1138–1140

    Article  PubMed  CAS  Google Scholar 

  52. Ostman-Smith I, Brown G, Johnson A et al. (1994) Dilated cardiomyopathy due to type-II X-linked 3-methylglutaconic aciduria: successful treatment with pantothenic acid. Br Heart J 72: 349–353

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, J.H., Wraith, J.E. (2000). Treatment: Present Status and New Trends. In: Fernandes, J., Saudubray, JM., Van den Berghe, G. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04285-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04285-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04287-8

  • Online ISBN: 978-3-662-04285-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics