Disorders of Sphingolipid Metabolism

  • Peter G. Barth


Sphingolipidoses are a subgroup of lysosomal storage disorders. They are characterized by relentless progressive storage in affected organs and concomitant functional impairments. No overall screening procedure for these disorders is available. Their course and appearance, however, are usually characteristic and, together with relevant technical procedures, such as magnetic resonance imaging (MRI), clinical neurophysiology, ophthalmoscopic examination, etc., a provisional diagnosis (“educated guess”) can be made, after which enzymatic diagnosis can close the gap in the diagnostic process. Subgroups of sphingolipidoses are grouped together, such as: disorders with prominent hepatosplenomegaly (Niemann-Pick A, B and Gaucher disease), disorders with central and peripheral demyelination [metachromatic leukodystrophy (MLD) and Krabbe disease], and disorders with prominent neuronal storage (the gangliosidoses). Farber disease and Fabry disease are unique in themselves. Fundamentally different etiologies separate Niemann-Pick types C and D from types A and B. For traditional reasons, they are still grouped together in this edition. The last decade has seen hopeful progress in therapeutic strategies, especially for Gaucher disease. Therefore, emphasis has been placed on these new developments.


Fabry Disease Gauche Disease Sphingolipid Metabolism Metachromatic Leukodystrophy Globoid Cell Leukodystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crocker AC (1961) The cerebral defect in Tay-Sachs disease and Niemann-Pick disease. J Neurochem 7: 69–80PubMedCrossRefGoogle Scholar
  2. 2.
    Vanier MT, Suzuki K (1996) Niemann-Pick diseases. In: Moser HW (ed) Neurodystrophies and Neurolipidoses. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 66. Revised series, vol 22. Elsevier Science, Amsterdam, pp 133–162Google Scholar
  3. 3.
    Brady RO, Kanfer JN, Mock MB, Fredrickson DS (1966) The metabolism of sphingomyelin II. Evidence of an enzymatic deficiency in Niemann-Pick disease. Proc Natl Acad Sci USA 55: 366–369Google Scholar
  4. 4.
    Schuchman EH, Levran O, Pereira LV, Desnick RJ (1992) Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics 12: 197–205PubMedCrossRefGoogle Scholar
  5. 5.
    Vanier MT, Pentchev P, Rodriguez-Lafrasse C, Rousson R (1991) Niemann-Pick disease type C: an update. J Inherit Metab Dis 14: 580–595PubMedCrossRefGoogle Scholar
  6. 6.
    Vanier MT, Duthel S, Rodriguez-Lafrasse C, Pentchev P, Carstea ED (1996) Genetic heterogeneity in Niemann-Pick C disease: a study using somatic cell hybridization and linkage analysis. Am J Hum Genet 58: 118–125PubMedGoogle Scholar
  7. 7.
    Vanier MT, Suzuki K (1998) Recent advances in elucidating Niemann-Pick C disease. Brain Pathol 8x63–174Google Scholar
  8. 8.
    Higgins JJ, Patterson MC, Dambrosia JM et al. (1992) A clinical staging classification for type C Niemann-Pick disease. Neurology 42: 2286–2290PubMedCrossRefGoogle Scholar
  9. 9.
    Lossos A, Schlesinger I, Okon E et al. (1997) Adult-onset Niemann-Pick type C disease. Clinical, biochemical, and genetic study. Arch Neurol 54: 1536–1541Google Scholar
  10. 10.
    Jan MM, Camfield PR (1998) Nova Scotia Niemann-Pick disease (type D): clinical study of 20 cases. J Child Neurol 13: 75–78PubMedCrossRefGoogle Scholar
  11. 11.
    Braak H, Braak E, Goebel HH (1983) Isocortical pathology in type C Niemann-Pick disease. A combined Golgi-pigmentarchitectonic study. J Neuropathol Exp Neurol 42: 671–687Google Scholar
  12. 12.
    Carstea ED, Morris JA, Coleman KG et al. (1997) NiemannPick Ci disease gene: homology to mediators of cholesterol homeostasis. Science 277: 228–231Google Scholar
  13. 13.
    Beutler E (1991) Gaucher’s disease. N Engl J Med 325: 1354–1360PubMedCrossRefGoogle Scholar
  14. 14.
    Beutler E (1993) Modern diagnosis and treatment of Gaucher’s disease. Am J Dis Child 147: 1175–1183PubMedGoogle Scholar
  15. 15.
    Dreberg S, Erikson A, Hagberg B (1980) Gaucher disease - Norbottnian type. I. General clinical description. Eur J Pediatr 133: 107–118Google Scholar
  16. 16.
    Sidransky E, Sherer DM, Ginns EI (1992) Gaucher disease in the neonate: a distinct Gaucher phenotype is analogous to a mouse model created by targeted disruption of the glucocerebrosidase gene. Pediatr Res 32:494–498Google Scholar
  17. 17.
    Brady RO, Barton NW, Grabowski GA (1993) The role of neurogenetics in Gaucher’s disease. Arch Neurol 50: 1212–1224Google Scholar
  18. 18.
    Brady RO (1996) Gaucher Disease. In: Moser HW (ed) Neurodystrophies and neurolipidoses. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 66. Revised series, vol 22. Elsevier Science, Amsterdam, pp 123–132Google Scholar
  19. 19.
    Kishimoto Y, Hiraiwa M, O’Brien JS (1992) Saposins: structure, function, distribution, and molecular genetics. J Lipid Res 33x255–1267Google Scholar
  20. 20.
    Hollak CE, van Weely S, van Oers MHJ, Aerts JFMG (1994) Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest 93: 1288–1292Google Scholar
  21. 21.
    Young E, Chatterton C, Vellodi A, Winchester B (1997) Plasma chitotriosidase activity in Gaucher disease patients who have been treated either by bone marrow transplantation or by enzyme replacement therapy with alglucerase. J Inherit Metab Dis 20:595–602Google Scholar
  22. 22.
    Mistry PK, Cox TM (1993) The glucocerebrosidase locus in Gaucher’s disease: molecular analysis of a lysosomal enzyme. J Med Genet 30: 889–894Google Scholar
  23. 23.
    Grewal RP, Barton NW (1992) Fabry’s disease presenting with stroke. Clin Neurol Neurosurg 94: 177–179PubMedCrossRefGoogle Scholar
  24. 24.
    Mitsias P, Levine SR (1996) Cerebrovascular complications of Fabry’s disease. Ann Neurol 40: 8–17PubMedCrossRefGoogle Scholar
  25. 25.
    Font RL, Fine BS (1972) Ocular pathology in Fabry’s disease. Histochemical and electron microscopic observations. Am J Ophthalmol 73: 419–430Google Scholar
  26. 26.
    Nakao S, Takenaka T, Maeda M et al. (1995) An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 333: 288–293PubMedCrossRefGoogle Scholar
  27. 27.
    Lockman LA, Hunninghake DB, Krivit W, Desnick RJ (1973) Relief of pain of Fabry’s disease by diphenylhydantoin. Neurology 23: 871–875PubMedCrossRefGoogle Scholar
  28. 28.
    Shibasaki H, Tabira T, Inoue N, Goto I, Kuroiwa Y (1973) Carbamazepine for painful crises in Fabry’s disease. J Neurol Sci 18: 47–51PubMedCrossRefGoogle Scholar
  29. 29.
    Filling-Katz MR, Merrick HF, Fink JK et al. (1989) Carbamazepine in Fabry’s disease: effective analgesia with dose-dependent exacerbation of autonomic dysfunction. Neurology 39:598–600Google Scholar
  30. 30.
    Gordon KE, Ludman MD, Finley GA (1995) Successful treatment of painful crises of Fabry disease with low dose morphine. Pediatr Neurol 3: 250–251Google Scholar
  31. 31.
    Eng CM, Resnick-Silverman LA, Niehaus DJ, Astrin KH, Desnick RJ (5993) Nature and frequency of mutations in the alpha-galactosidase A gene that cause Fabry disease. Am J Hum Genet 53x186–1197Google Scholar
  32. 32.
    Eng CM, Ashley GA, Burgert TS et al. (1997) Fabry disease: thirty-five mutations in the alpha-galactosidase A gene in patients with classic and variant phenotypes. Mol Med 3: -182Google Scholar
  33. 33.
    Koch J, Gartner S, Li CM et al. (1996) Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification of the first molecular lesion causing Farber disease. J Biol Chem 275: 33110–33115Google Scholar
  34. 34.
    Landing BH, Silverman FN, Craig MM et al. (1964) Familial neurovisceral lipidosis. Am J Dis Child 108: 503–522PubMedGoogle Scholar
  35. 35.
    O’Brien JS (1970) Generalized gangliosidosis. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol Io. North Holland, Amsterdam, pp 462–483Google Scholar
  36. 36.
    Suzuki K, Suzuki K (1996) The gangliosidoses. In: Moser HW (ed) Neurodystrophies and Neurolipidoses. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 66. Revised series, vol 22. Elsevier Science, Amsterdam, pp 247–280Google Scholar
  37. 37.
    Kohlschütter A, Sieg K, Schulte FJ, Hayek HW, Goebel HH (5982) Infantile cardiomyopathy and neuromyopathy with–galactosidase deficiency. Eur J Pediatr 139: 75–81Google Scholar
  38. 38.
    Bonduelle M, Lissens W, Goossens A et al. (1991) Lysosomal storage diseases presenting as transient or persistent hydrops fetalis. Genet Couns 2: 227–232PubMedGoogle Scholar
  39. 39.
    Oshima A, Yoshida K, Itoh K et al. (1994) Intracellular processing and maturation of mutant gene products in hereditary beta-galactosidase deficiency (beta-galactosidosis). Hum Genet 93: 109–114Google Scholar
  40. 40.
    Uyama E, Terasaki T, Watanabe S et al. (1992) Type 3 GM1 gangliosidosis: characteristic MRI findings correlated with dystonia. Acta Neurol Scand 86: 609–615PubMedCrossRefGoogle Scholar
  41. 41.
    Kobayashi O, Takashima S (1994) Thalamic hyperdensity on CT in infantile Gm. gangliosidosis. Brain Dev 16:472–474Google Scholar
  42. 42.
    Ishii N, Oshima A, Sakuraba H, Fukuyama Y, Suzuki Y (1994) Normal serum beta-galactosidase in juvenile Gm gangliosidosis. Pediatr Neurol 10: 317–319PubMedCrossRefGoogle Scholar
  43. 43.
    Boustany RM, Qian WH, Suzuki K (1993) Mutations in acid beta-galactosidase cause Gmi gangliosidosis in American patients. Am J Hum Genet 53: 881–888Google Scholar
  44. 44.
    Chakraborty S, Rafi MA, Wenger DA (1994) Mutations in the lysosomal beta-galactosidase gene that causes the adult form of Gmi gangliosidosis. Am J Hum Genet 54: 1004–1013Google Scholar
  45. 45.
    Morrone A, Morreau H, Zhou XY et al. (1994) Insertion of a T next to the donor splice of intron 1 causes aberrantly spliced mRNA in a case of infantile Gmi-gangliosidosis. Hum Mutat 3x12–120Google Scholar
  46. 46.
    Mosna G, Fattore S, Tubiello G et al. (1992) A homozygous missense arginine to histidine substitution at position 482 of the beta-galactosidase in an Italian infantile GMI gangliosidosis patient. Hum Genet 90: 247–250PubMedCrossRefGoogle Scholar
  47. 47.
    Nishimoto J, Nanba E, Inui K, Okada S, Suzuki K (1991) GM1 69. gangliosidosis (genetic beta-galactosidase deficiency): identification of four mutations in different clinical phenotypes among Japanese patients. Am J Hum Genet 49: 566–574PubMedGoogle Scholar
  48. 48.
    Volk BW, Schneck L, Adachi M (1970) Clinic, pathology and 70. biochemistry of Tay-Sachs disease. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 1o, North Holland, Amsterdam, pp 385–426Google Scholar
  49. 49.
    Argov Z, Navon R (1984) Clinical and genetic variations in the 71. syndrome of adult GM2 gangliosidosis resulting from hexosaminidase A deficiency. Ann Neurol 16: 14–20 72.Google Scholar
  50. 50.
    Navon R, Argov Z, Frisch A (1986) Hexosaminidase A deficiency in adults. Am J Med Genet 24x79–196Google Scholar
  51. 51.
    Meek D, Wolfe LS, Andermann E, Andermann F (1984) 73. Juvenile progressive dystonia: a new phenotype of GM2gangliosidosis. Ann Neurol 15:348-352Google Scholar
  52. 52.
    Harding AE, Young EP, Schon F (1987) Adult onset supra- 74. nuclear ophthalmoplegia, cerebellar ataxia and neurogenic proximal muscular weakness in a brother and sister: another hexosaminidase A deficiency syndrome. J Neurol Neurosurg Psychiatr 50: 687–75.PubMedCrossRefGoogle Scholar
  53. 53.
    Bolhuis PA, Oonk JGW, Kamp PE et al. (1987) Ganglioside storage, hexosaminidase lability, and urinary oligosaccharides in adult Sandhoff’s disease. Neurology 37: 75–81PubMedCrossRefGoogle Scholar
  54. 54.
    Goebel HH, Stolte G, Kustermann-Kuhn B, Harzer K (1989) 76. B1 variant of GM2 gangliosidosis in a 12-year old patient. Pediatr Res 25: 1–1893Google Scholar
  55. 55.
    Maia M, Alves D, Ribeiro G, Pinto R, Sa Miranda MC (1990) Juvenile GM2 gangliosidosis variant B1: clinical and bio- 77. chemical study in seven patients. Neuropediatrics 21: 18–23PubMedCrossRefGoogle Scholar
  56. 56.
    Goldman JE, Yamanaka T, Rapin I et al. (1980) The AB-variant of GM2-gangliosidosis. Acta Neuropathol (Berl) 52: 189–202 78.Google Scholar
  57. 57.
    Myerowitz R (1997) Tay-Sach disease-causing mutations and neutral polymorphisms in the Hex A gene. Hum Mutat 9: 79. 195–208PubMedCrossRefGoogle Scholar
  58. 58.
    Paw BH, Tieu PT, Kaback MM, Lim J, Neufeld EF (1990) Frequency of three Hex A mutant alleles among Jewish and 80. non-Jewish carriers identified in a Tay-Sachs screening program. Am J Hum Genet 47: 698–705PubMedGoogle Scholar
  59. 59.
    Dos Santos MR, Tamala A. S Miranda MC et al. (1991) GM2–81. gangliosidosis B1 variant: analysis of 13-hexosaminidase a gene mutations in eleven patients from a defined regio in Portugal. Am J Hum Genet 49: 886–890PubMedGoogle Scholar
  60. 60.
    Kolodny EH (1997) GM2 gangliosidoses. In: Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL (eds) The molecular and 82. genetic basis of neurological disease. Butterworth-Heinemann, Boston, pp 473–490Google Scholar
  61. 61.
    Hagberg B (1963) Clinical symptoms, signs and tests in metachromatic leucodystrophy. In: Folch-Pi J, Bauer H (eds) 83. Brain lipids and lipoproteins and the leukodystrophies. Elsevier, Amsterdam, pp 134–146Google Scholar
  62. 62.
    Haltia T, Palo J, Haltia M, Icén A (1980) Juvenile metachro- 84. matic leukodystrophy. Clinical, biochemical, and neuro-pathologic studies in nine cases. Arch Neurol 37: 42–46Google Scholar
  63. 63.
    Shapiro EG, Lockman LA, Knopman D, Krivit W (1994) Characteristics of the dementia in late-onset metachromatic 85. leukodystrophy. Neurology 44: 662–665PubMedCrossRefGoogle Scholar
  64. 64.
    Hyde TM, Ziegler JC, Weinberger DR (1992) Psychiatric disturbances in metachromatic leukodystrophy. Arch Neurol 49: 401–406 86.Google Scholar
  65. 65.
    Hahn AF, Gordon BA, Feleki V, Hinton GG, Gilbert JJ (1982) A variant form of metachromatic leukodystrophy without arylsulfatase deficiency. Ann Neurol 12:33–36 87.Google Scholar
  66. 66.
    Gieselmann V, Polten A, Kreysing J et al. (1991) Molecular genetics of metachromatic leukodystrophy (review). Dev 88. Neurosci 13: 222–227Google Scholar
  67. 67.
    Francis GS, Bonni A, Shen N et al. (1993) Metachromatic leukodystrophy: multiple nonfunctional and pseudodeficiency alleles in a pedigree: problems with diagnosis and counseling. Ann Neurol 34: 212–218 89.Google Scholar
  68. 68.
    Lugowska A, Tylki-Szymanska A, Berger J, Molzer B (1997) Elevated sulfatide excretion in compound heterozygotes of metachromatic leukodystrophy and ASA-pseudodeficiency 90. allele. Clin Biochem 30:325–331Google Scholar
  69. 69.
    Wenger DA, DeGala G, Williams C et al. (1989) Clinical pathological, and biochemical studies on an infantile case of sulfatide/GM1 activator protein deficiency. Am J Med Genet 33 255–265PubMedCrossRefGoogle Scholar
  70. 70.
    Kihara H, Ho CK, Fluharty AL, Tsay KK, Hartlage PL (1980) Prenatal diagnosis of metachromatic leukodystrophy in a family with pseudoarylsulfatase A deficiency by the cerebro-side sulfate loading test. Pediatr Res 14. 224–227PubMedCrossRefGoogle Scholar
  71. 71.
    Jaeken J, De Cock P, Casaer P (1991) Vigabatrin as spasmolytic drug. Lancet 338x603 (letter)Google Scholar
  72. 72.
    Bayever E, Ladisch S, Philippart M et al. (1985) Bone marrow transplantation for metachromatic leucodystrophy. Lancet 2:471–473Google Scholar
  73. 73.
    Krivit W, Shapiro E, Kennedy W et al. (1990) Treatment of late infantile metachromatic leukodystrophy by bone marrow transplantation. N Engl J Med 322: 28–32PubMedCrossRefGoogle Scholar
  74. 74.
    Dhuna A, Toro C, Torres F, Kennedy WR, Krivit W (1992) Longitudinal neurophysiological studies in a patient with metachromatic leukodystrophy following bone marrow transplantation. Arch Neurol 49: 1088–1092PubMedCrossRefGoogle Scholar
  75. 75.
    Malm G, Ringden O, Winiarski J et al. (1996) Clinical outcome in four children with metachromatic leukodystrophy treated by bone marrow transplantation. Bone Marrow Transplant 17: 1003–1008PubMedGoogle Scholar
  76. 76.
    Navarro C, Fernandez JM, Dominguez C, Fachal C, Alvarez M (1996) Late juvenile metachromatic leukodystrophy treated with bone marrow transplantation: a 4-year follow-up study. Neurology 46: 254–256PubMedCrossRefGoogle Scholar
  77. 77.
    Kidd D, Nelson J, Jones F et al. (1998) Long-term stabilization after bone marrow transplantation in juvenile metachromatic leukodystrophy. Arch Neurol 55: 98–99PubMedCrossRefGoogle Scholar
  78. 78.
    Kreysing HJ, von Figura K, Gieselmann V (1990) The structure of the arylsulfatase A gene. Eur J Biochem 191: 627–631PubMedCrossRefGoogle Scholar
  79. 79.
    Gieselmann V, Zlotogora J, Harris A et al. (1994) Molecular genetics of metachromatic leukodystrophy. Hum Mut 4: 233–242Google Scholar
  80. 80.
    Polten A, Fluharty AL, Fluharty CB, Kappler J, von Figura K, Gieselmann V (1991) Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med 324: 18–22PubMedCrossRefGoogle Scholar
  81. 81.
    Berger J, Loschl B, Bernheimer H, Lugowska A, TylkiSzymanska A, Gieselmann V, Molzer B (1997) Occurrence, distribution, and phenotype of arylsulfatase A mutations in patients with metachromatic leukodystrophy. Am J Med Genet 69:335–340Google Scholar
  82. 82.
    Draghia R, Letourneur F, Drugan C et al. (1997) Metachromatic leukodystrophy: identification of the first deletion in exon 1 and of nine novel point mutations in the arylsulfatase A gene. Hum Mutat 9: 234–242PubMedCrossRefGoogle Scholar
  83. 83.
    Zlotogora J, Bach G, Bosenberg C et al. (1995) Molecular basis of late infantile metachromatic leukodystrophy in the Habbanite Jews. Hum Mutat 5: 137–143Google Scholar
  84. 84.
    Regis S, Filocamo M, Stroppiano M, Corsolini F, Gatti R (1996) Molecular analysis of the arylsulphatase A gene in late infantile metachromatic leucodystrophy patients and healthy subjects from Italy. J Med Genet 33: 251–252PubMedCrossRefGoogle Scholar
  85. 85.
    Harvey JS, Carey WF, Morris CP (1998) Importance of the glycosylation and polyadenylation variants in metachromatic leukodystrophy pseudodeficiency phenotype. Hum Mol Genet 7: 1215–1219PubMedCrossRefGoogle Scholar
  86. 86.
    Hagberg B, Kollberg H, Sourander P, kesson HO (1969) Infantile globoid cell leucodystrophy. A clinical and genetic study of 32 Swedish cases 1953–1967. Neuropadiatrie 1: 74–88Google Scholar
  87. 87.
    Lake BD (1968) Segmental demyelination of peripheral nerves in Krabbe’s disease. Nature 217: 171–121PubMedCrossRefGoogle Scholar
  88. 88.
    Loonen MCB, van Diggelen OP, Janse H, Kleijer WJ, Arts WFM (1985) Late-onset globoid cell leucodystrophy ( Krabbe’s disease) Clinical and genetic delineation of two forms and their relation to the early-infantile form. Neuropediatrics 16: 137–142Google Scholar
  89. 89.
    Suzuki K (1998) Twenty five years of the “psychosine hypothesis”: a personal perspective of its history and present status. Neurochem Res 23: 251–259PubMedCrossRefGoogle Scholar
  90. 90.
    Baram TZ, Goldman AM, Percy AK (1986) Krabbe disease: specific MRI and CT findings. Neurology 36x11–115Google Scholar
  91. 91.
    Barone R, Brühl K, Stoeter P et al. (1996) Clinical and neuroradiological findings in classic infantile and late-onset globoid-cell leukodystrophy ( Krabbe disease ). Am J Med Genet 63: 209–217Google Scholar
  92. 92.
    Krivit W, Shapiro EG, Peters C et al. (1998) Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med 338: 1119–1126PubMedCrossRefGoogle Scholar
  93. 93.
    Wenger DA, Rafi MA, Luzi P (1997) Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat 1o: 268–279CrossRefGoogle Scholar
  94. 94.
    Kleijer WJ, Keulemans JL, van der Kraan M et al. (1997) Prevalent mutations in the GALC gene of patients with Krabbe disease of Dutch and other European origin. J Inherit Metab Dis 20: 587–594PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Peter G. Barth

There are no affiliations available

Personalised recommendations