Skip to main content

Nonketotic Hyperglycinemia

  • Chapter
Inborn Metabolic Diseases

Abstract

Nonketotic hyperglycinemia (NKH) is an autosomal recessive disorder that is characterized by rapidly progressing neurological symptoms, such as muscular hypotonia, seizures, apneic attacks, and lethargy or coma in early infancy, mostly in the neonatal period. Most patients die within a few weeks, whereas the survivors show severe psychomotor retardation. Increased glycine concentrations in plasma, urine, and cerebrospinal fluid are biochemical features of the disorder. The primary lesion was found to be a defect in the glycine cleavage system (GCS) (Fig. 21.1). No specific treatment is available. Prenatal diagnosis is feasible by determining the activity of GCS in chorionic villi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tada K (1987) Nonketotic hyperglycinemia: clinical and metabolic aspects. Enzyme 38: 27–35

    PubMed  CAS  Google Scholar 

  2. Dobyns WB (1989) Agenesis of the corpus callosum and gyral malformations are frequent manifestations of nonketotic hyperglycinemia. Neurology 39: 817–820

    Article  PubMed  CAS  Google Scholar 

  3. Markand ON, Garg BP, Brondt IK (1982) Nonketotic hyperglycinemia: electroencephalographic and evoked potential abnormalities. Neurology 32: 151–156

    Article  PubMed  CAS  Google Scholar 

  4. Tada K, Kure S (1983) Nonketotic hyperglycinemia: molecular lesion,diagnosis and pathophysiology. J Inherit Metab Dis 16: 691–703

    Article  Google Scholar 

  5. Luder AS, Davidson A, Goodman SI, Green CL (1989) Transient nonketotic hyperglycinemia in neonates. J Pediatr 114: 1013–1015

    Article  PubMed  CAS  Google Scholar 

  6. Zammarchi E, Donati MA, Ciani F (1995) Transient neonatal nonketotic hyperglycinemia: a 13-year follow-up. Neuropediatrics 26: 328–330

    Article  PubMed  CAS  Google Scholar 

  7. Tada K, Narisawa K, Yoshida T, Konno T, Yokoyama Y et al. (1969) Hyperglycinemia: defect in glycine cleavage reaction. Tohoku J Exp Med 98: 289–296

    Article  PubMed  CAS  Google Scholar 

  8. Kikuchi G (1983) The glycine cleavage system: composition, reaction mechanism,and physiological significance. Mol Cell Biochem 1: 169–187

    Article  Google Scholar 

  9. Hayasaka K, Tada K, Kikuchi G, Winter S, Nyhan WL (1983) Nonketotic hyperglycinemia: two patients with primary defects of P-protein and T-protein, respectively, in the glycine cleavage system. Pediatr Res 17: 967–970

    Article  PubMed  CAS  Google Scholar 

  10. Hayasaka K, Narisawa K, Satoh T, Tateda H, Metoki K et al. (1982) Glycine cleavage system in ketotic hyperglycinemia. Pediatr Res 16: 5–7

    Article  PubMed  CAS  Google Scholar 

  11. Hayasaka K, Tada K (1983) Effects of the metabolites of the branched-chain aminoacids and cysteamine on the glycine cleavage system. Biochem Int 6: 225–230

    PubMed  CAS  Google Scholar 

  12. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529–531

    Article  PubMed  CAS  Google Scholar 

  13. McDonald JW, Johnstone MV (1990) Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Rev 15: 41–70

    Article  PubMed  Google Scholar 

  14. Sato K, Yoshiada S, Fujiwara K, Tada K, Tohyama M (1991) Glycine cleavage system in astrocytes. Brain Res 567: 64–70

    Article  PubMed  CAS  Google Scholar 

  15. Kure S, Narisawa K, Tada K (1992) Enzymatic diagnosis of nonketotic hyperglycinemia with lymphoblasts. J Pediatr 120: 95–98

    Article  PubMed  CAS  Google Scholar 

  16. Hayasaka K, Tada K, Fueki N et al. (1987) Feasibility of prenatal diagnosis of nonketotic hyperglycinemia: existence of the glycine cleavage system in placenta. J Pediatr 110: 124–126

    Article  PubMed  CAS  Google Scholar 

  17. Hayasaka K, Tada K, Fueki N, Aikawa D (1990) Prenatal diagnosis of nonketotic hyperglycinemia: enzymatic analysis of the glycine cleavage system in chorionic villi. J Pediatr 16: 444–445

    Google Scholar 

  18. Kure S, Takayanagi M, Narisawa K, Tada K, Leisti J (1992) Identification of a common mutation in Finnish patients with nonketotic hyperglycinemia. J Clin Invest 90: 160–140

    Article  PubMed  CAS  Google Scholar 

  19. Gitzelmann R, Cuenod M, Otten A, Steinmann B, Dumermuth G (1977) Nonketotic hyperglycinemia treated with strychnin. Pediatr Res 11: 10–16

    Google Scholar 

  20. ohya Y, Ochi N, Mizutani N, Hayakawa C, Watanabe K (1991) Nonketotic hyperglycinemia: treatment with NMDA antagonist and consideration of neuropathogenesis. Pediatr Neurol 7: 65–68

    Article  PubMed  CAS  Google Scholar 

  21. Tegtmeyer-Metzdorf H, Roth B, Gunther M et al. (1995) Ketamine and strychnine treatment of an infant with nonketotic hyperglycinemia. Eur J Pediatr 154: 649–653

    Article  PubMed  CAS  Google Scholar 

  22. Boneh A, Degni Y, Harari M (1996) Prognostic clues and outcome of early treatment of nonketotic hyperglycinemia. Pediatr Neurol 15: 137–147

    Article  PubMed  CAS  Google Scholar 

  23. Hamosh A, Maber JF, Bellus GA, Rasmussen SA, Johnston MV (1998) Long-term use of high-dose benzoate and dextromethorphan for the treatment of nonketotic hyperglycinemia. J Pediatr 132: 709–713

    Article  PubMed  CAS  Google Scholar 

  24. Deutsch SI, Rosse RB, Mastropaolo J (1998) Current status of NMDA antagonist interventions in the treatment of nonketotic hyperglycinemia. Clin Neuropharmacol 21: 71–79

    PubMed  CAS  Google Scholar 

  25. Kure S, Narisawa K, Tada K (1991) Structural and expression analyses of normal and mutant mRNA encoding glycine decarboxylase: three base deletion in mRNA causes nonketotic hyperglycinemia. Biochem Biophys Res Commun 174: 1176–1182

    Article  PubMed  CAS  Google Scholar 

  26. Hyasaka K, Nanao K, Takada G, Ikeda KO, Motokawa Y (1993) Isolation and sequence determination of cDNA encoding human T-protein of the glycine cleavage system. Biochem Biophys Res Commun 192: 766–771

    Article  Google Scholar 

  27. Nanao K, Ikeda KO, Motokawa Y, Danks DM, Hayasaka K et al. (1994) Identification of the mutations in the T-protein gene causing typical and atypical nonketotic hyperglycinemia. Hum Genet 93: 655–658

    Article  PubMed  CAS  Google Scholar 

  28. Kure S, Shinka T, Sakata Y, Narasaki O, Takayanagi M et al. (1998) A one-base deletion (183delC) and a missense mutation (D276H) in the T-protein gene from a Japanese family with nonketotic hyperglycinemia. J Hum Genet 43: 135–137

    Article  PubMed  CAS  Google Scholar 

  29. Kure S, Mandel H, Rolland MO, Sakata Y, Shinka T et al. (1998) A missense mutation (His42Arg) in the T-protein gene from a large Israeli-Arab kindred with nonketotic hyperglycinemia. Hum Genet 102: 430–434

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tada, K. (2000). Nonketotic Hyperglycinemia. In: Fernandes, J., Saudubray, JM., Van den Berghe, G. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04285-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04285-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04287-8

  • Online ISBN: 978-3-662-04285-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics