Advertisement

Area of Real Contact: Elastic and Plastic Deformations

  • Bo N. J. Persson
Part of the NanoScience and Technology book series (NANO)

Abstract

The friction force equals the shear stress integrated over the area ΔA of real contact. Because of surface roughness, the area of real contact is usually much smaller than the apparent area of contact. In this section we discuss the physical processes which determine the area of real contact and present some experimental methods which have been used to estimate ΔA. In most practical applications, the diameter of the contact areas (junctions) are on the order of ~ 10 urn. However, the present drive towards microsystems, e.g., micromotors, has generated a great interest in the nature of nanoscale junctions. The physical processes which determine the formation and behavior of nanoscale junctions are quite different from those of microscale junctions. We consider first microscale junctions and then nanoscale junctions.

Keywords

Plastic Deformation Contact Area Internal Friction Rubber Surface Real Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    L.D. Landau, E.M. Lifshitz: Theory of Elasticity (Pergamon, New York 1975)Google Scholar
  2. 5.2
    F.A. McClintock, A.S. Argon: Mechanical Behavior of Materials (Addison-Wesley, Reading, MA 1966)Google Scholar
  3. 5.3
    J.A. Greenwood: In Fundamentals of Friction: Macroscopic and Microscopic Processes, ed. by I.L. Singer, H.M. Pollock (Kluwer, Dordrecht 1992)Google Scholar
  4. 5.4
    I.L. Singer, H.M. Pollock (eds.): Fundamentals of Friction: Macroscopic Processes (Kluwer, Dordrecht 1992) p. 228Google Scholar
  5. 5.5
    F. Pobell: Matters and Methods at Low Temperature, 2nd edn. (Springer, Berlin, Heidelberg 1996)Google Scholar
  6. 5.6
    J.H. Dieterich, B.D. Kilgore: PAGEOPH 143, 283 (1994)CrossRefGoogle Scholar
  7. 5.7
    L.D. Landau, E.M. Lifshitz: Electrodynamits of Continuous Media (Pergamon, London 1960)Google Scholar
  8. 5.8
    K.L. Johnson: In Contact Mechanics (Cambridge Univ. Press, Cambridge 1985)Google Scholar
  9. 5.9
    B.V. Derjaguin, V.M. Muller, Y.P. Toporov: J. Coll. Interface Sci. 53, 314 (1975)CrossRefGoogle Scholar
  10. 5.10
    V.M. Muller, V.S. Yushenko, B.V. Derjaguin: J. Coll. Interface Sci. 77, 91 (1980)CrossRefGoogle Scholar
  11. B.D. Hughes, L.R. White: J. Mech. Appl. Math. 32, 445 (1979)CrossRefGoogle Scholar
  12. 5.11
    D. Maugis: J. Coll. Interface Sci. 150, 243 (1992)CrossRefGoogle Scholar
  13. 5.11a
    D.S. Dugdale: J. Mech. Phys. Solids 8, 100 (1960)CrossRefGoogle Scholar
  14. 5.12
    U. Landman, W.D. Luedtke, B.E. Salisbury, R.L. Whetten: Phys. Rev. Lett. 77, 1362 (1996)CrossRefGoogle Scholar
  15. 5.13
    U. Landman, W.D. Luedtke, J. Gao: Langmuir 12, 4514 (1996)CrossRefGoogle Scholar
  16. 5.14
    U. Diirig, A. Stalder: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht 1996)Google Scholar
  17. 5.15
    U. Landman, W.D. Luedtke, E. Ringer: Wear 153, 3 (1992)CrossRefGoogle Scholar
  18. 5.16
    S.A. Joyce, R.C. Thomas, J.E. Houston, T.A. Michalske, R.M. Crooks: Phys. Rev. Lett. 68, 2790 (1992)CrossRefGoogle Scholar
  19. R.C. Thomas, J.E. Houston, T.A. Michalske, R.M. Crooks: Science 259, 1883 (1993)CrossRefGoogle Scholar
  20. 5.17
    J.D. Ferry: Viscoelastic Properties of Polymers (Wiley, New York 1980)Google Scholar
  21. 5.17a
    P.J. Flory: Principles of Polymer Chemistry (Cornell Univ.Press, Ithaka, NY 1953)Google Scholar
  22. 5.18
    M. Doi, S.F. Edwards: The Theory of Ploymer Dynamits (Oxford Univ. Press, Oxford 1986)Google Scholar
  23. 5.19
    D.F. More: The Friction and Lubrication of Elastomers (Pergamon, London 1972)Google Scholar
  24. 5.20
    K.A. Grossen: Proc. Roy. Sec. (London) A 274, 21 (1963)CrossRefGoogle Scholar
  25. 5.21
    A. Schallamach: Wear 6, 375 (1963)CrossRefGoogle Scholar
  26. 5.22
    U. Diirig, A. Stalder: In Sliding Friction, ed. by B. Bhushan (Kluwer, Dordrecht 1997)Google Scholar
  27. 5.23
    H. Yoshizawa, J. Israelachvili: J. Phys. Chem. 97, 11300 (1993)CrossRefGoogle Scholar
  28. 5.24
    J. Halaunbrenner, A. Kubisz: ASLE-ASME Lubrication Conf., Chicago (1967) Paper No. 67-Lub-25Google Scholar
  29. 5.25
    A.D. Roberts: Rubber Chem. Techn. 65, 673 (1992)CrossRefGoogle Scholar
  30. 5.26
    K. Mori, S. Kaneda, K. Kanae, H. Hirahara, Y. Oishi, A. Iwabuchi: Rubber Chem. Techn. 67, 798 (1994)CrossRefGoogle Scholar
  31. 5.27
    M. Barquins: Mater. Sci. Eng. 73, 45 (1985)CrossRefGoogle Scholar
  32. 5.28
    S.G. Corcoran, R.J. Colton, E.T. Lilleodden, W.W. Gerberich: Phys. Rev. B 55, R16057 (1997)CrossRefGoogle Scholar
  33. 5.29
    B.N.J. Persson: Phys. Rev. Lett. 81, 3439 (1998);CrossRefGoogle Scholar
  34. 5.29
    B.N.J. Persson: J. Chem. Phys. 110, 9713 (1999)CrossRefGoogle Scholar
  35. 5.30
    A. Schallamach: Rubber Chem. and Technol. 209, 69 (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bo N. J. Persson
    • 1
  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations