Skip to main content

Modern Experimental Methods and Results

  • Chapter
Sliding Friction

Part of the book series: NanoScience and Technology ((NANO))

  • 1029 Accesses

Abstract

Practically all sliding friction devices have an interface where the friction force is generated, a finite sliding mass M, and some elastic properties usually represented by a spring k s as in Fig. 3.1. The spring does not need to be an external spring but could represent the overall elastic properties of the sliding device. In most sliding friction experiments the free end of the spring moves with a constant velocity v s , but sometimes it varies with time. The force in the spring as a function of time is the basic quantity registered in most of these experiments. It is important to note that, due to inertia, during acceleration the spring force is not equal to the friction force acting on the block.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.N. Israelachvili: Surf. Sci. Rpt. 14, 109 (1992)

    Article  CAS  Google Scholar 

  2. H. Yoshizawa, J. Israelachvili: J. Phys. Chem. 97, 11300 (1993)

    Article  CAS  Google Scholar 

  3. H. Yoshizawa, Y.-L. Chen, J. Israelachvili: Wear 168, 161 (1993)

    Article  CAS  Google Scholar 

  4. H. Yoshizawa, Y.-L. Chen, J. Israelachvili: J. Phys. Chem. 97, 4128 (1993)

    Article  CAS  Google Scholar 

  5. B.N.J. Persson: Phys. Rev. B 51, 13568 (1995)

    Article  CAS  Google Scholar 

  6. A.D. Berman, W. A. Ducker, J. N. Israelachvili: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht 1996)

    Google Scholar 

  7. R. Erlandsson, G. Hadziioannou, C.M. Mate, G.M. McClelland, S. Chiang: J. Chem. Phys. 89, 5190 (1988)

    Article  CAS  Google Scholar 

  8. C. Mathew, G.M. McClelland, R. Erlandsson, S. Chiang: Phys. Rev. Lett. 59, 1942 (1987)

    Article  Google Scholar 

  9. E. Rabinowicz, D. Tabor: Proc. Roy. Sec. (London) A 208, 455 (1951)

    Article  Google Scholar 

  10. J. Krim, A. Widom: Phys. Rev. B 38, 12184 (1988)

    Article  Google Scholar 

  11. J. Krim, D.H. Solina, R. Chiarello: Phys. Rev. Lett. 66, 181 (1991)

    Article  CAS  Google Scholar 

  12. J. Krim: Scientific Am. 275, 48 (October 1996)

    Article  Google Scholar 

  13. J. Krim, C. Daly: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht 1996)

    Google Scholar 

  14. C. Daly, J. Krim: Phys. Rev. Lett. 76, 803 (1996)

    Article  CAS  Google Scholar 

  15. J. Krim, D.H. Solina, R. Chiarello: Phys. Rev. Lett. 66, 181 (1991)

    Article  CAS  Google Scholar 

  16. J. Krim, E.T. Watts, J. Digel: J. Vac. Sci. Technol. A 8, 3417 (1990)

    Article  CAS  Google Scholar 

  17. E.T. Watts, J. Krim, A. Widom: Phys. Rev. B 41, 3466(1990)

    Article  Google Scholar 

  18. J. Krim, R. Chiarello: J. Vac. Sci. Technol. A 9, 2566 (1991)

    Article  CAS  Google Scholar 

  19. E. Meyer, R. Lüthi, L. Howald, M. Bammerlin, M. Guggisberg, H.-J. Güntherodt, L. Scandella, J. Gobrecht: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht 1996)

    Google Scholar 

  20. U.D. Schwarz, H. Bluhm, H. Hölscher, W. Allers, R. Wiesendanger: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht 1996)

    Google Scholar 

  21. U.D. Schwarz, R. Wiesendanger: Priv. Commun. (1996)

    Google Scholar 

  22. M. Rosso, D. Schumacher: Priv. commun. (1996)

    Google Scholar 

  23. A. Dayo, W. Alnasrallah: J. Krim, Phys. Rev. Lett. 80, 1960 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Persson, B.N.J. (2000). Modern Experimental Methods and Results. In: Sliding Friction. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04283-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04283-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08652-6

  • Online ISBN: 978-3-662-04283-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics