Elastic Interactions and Instability Transitions

  • Bo N. J. Persson
Part of the NanoScience and Technology book series (NANO)


The study in Chap. 9 assumed that the lateral corrugation of the adsorbate-substrate interaction potential was so weak that the adsorbate layer could fluidize as a result of the shear force stemming from the external force acting on the block. For this case we have argued that the kinetic frictional force at low sliding velocities is likely to involve the formation and fluidization of solid structures. But in many cases the corrugation of the adsorbate-substrate potential energy surface is so strong that no fluidization of the adsorbate layer can occur. This often seems to be the case when fatty acids are used as boundary lubricants: the polar heads of fatty acid molecules bind strongly to specific sites on many metal oxides and the sliding occurs now between the inert hydrocarbon tails as indicated schematically in Fig. 2.5. In Sect. 10.1 we discuss some simple models which illustrate the fundamental origin of the friction force when no fluidization can occur. As will be shown below, if the corrugated substrate potential is large enough compared with the local elasticity, an elastic instability will occur, which will result in a kinetic friction force which remains finite as the sliding velocity v → 0 (we assume zero temperature, so that no thermally activated creep motion occurs). In Sect. 10.2 the elastic coherence length ξ is introduced and calculated for a semi-infinite elastic solid exposed to a random surface stress.


Friction Force Instability Transition Elastic Interaction Spring Force Elastic Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 10.1
    G.M. McClelland: In Adheasion and Friction, ed. by M. Grunze, H.J. Kreuzer, Springer Ser. Surf. Sci., Vol. 17 (Springer, Berlin, Heidelberg 1989)Google Scholar
  2. 10.2
    K. Shinjo, M. Hirano; Surf. Sci. 283, 473 (1993)CrossRefGoogle Scholar
  3. 10.3
    Y. Braiman, F. Family, G. Hentschel: Phys. Rev. E 53, R3005 (1996)CrossRefGoogle Scholar
  4. 10.3a
    M.G. Rozman, J. Klafter, M. Urbakh; In Micro/Nanotribology and its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997)Google Scholar
  5. F.J. Elmer: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tossati (Kluwer, Dordrecht 1996)Google Scholar
  6. 10.4
    H. Matsukawa, H. Fukuyama: Phys. Rev. B 49, 17286 (1994)CrossRefGoogle Scholar
  7. 10.5
    C. Caroli, P. Nozieres: In Physicsof Sliding Friction, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht 1996)Google Scholar
  8. 10.6
    B.N.J. Persson, E. Tosatti: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht 1996) pp. 179–189Google Scholar
  9. 10.7
    A.I. Larkin, Yu.N. Ovchinnikov: J. Low Temp. Phys. 34, 409 (1979)CrossRefGoogle Scholar
  10. 10.8
    P.A. Lee: Nature 291, 11 (1981)CrossRefGoogle Scholar
  11. 10.9
    L.D. Landau, E.M. Lifshitz: Theory of Elasticity (Pergamon, New York 1975)Google Scholar
  12. 10.10
    Y.J.M. Brechet, B. Boucot, H.J. Jensen, A.-C. Shi: Phys. Rev. B 42, 2116 (1990)CrossRefGoogle Scholar
  13. 10.11
    P.E. Malin, S.N. Blakeslee, M.G. Alvarez, A.J. Martin: Science 244, 557 (1989)CrossRefGoogle Scholar
  14. 10.12
    R. Abercrombie, P. Leary: Geophys. Res. Lett. 20, 1511 (1993)CrossRefGoogle Scholar
  15. 10.13
    S.J. Gibowicz, R.P. Young, S. Talebi, D.J. Rawlence: Bull. Seismolog. Sec. Am. 81, 1157 (1991)Google Scholar
  16. 10.14
    C.H. Scholz: The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, Cambridge 1990) p. 250Google Scholar
  17. 10.15
    R. Liithi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, H.-J. Güntherodt: Science 266, 1979 (1994)CrossRefGoogle Scholar
  18. 10.16
    T.A. Jung, R.R. Schüttler, J.K. Gimzewski, H. Tang, C. Joachim: Science 271, 181 (1996)CrossRefGoogle Scholar
  19. 10.17
    D.M. Eigler, E. K. Schweizer: Nature 344, 524 (1990)CrossRefGoogle Scholar
  20. 10.18
    R.E. Walkup, D.M. Newns, Ph. Avouris: In Atomic and Nanometer Scale Modification of Materials: Fundamentals and Applications, ed. by Ph. Avouris (Kluwer, Dordrecht 1993) p. 97CrossRefGoogle Scholar
  21. 10.19
    B.N.J. Persson, A.I. Volokitin: J. Phys. Condensed Matter 9, 2869 (1997)CrossRefGoogle Scholar
  22. 10.20
    M.R. Falvo, R.M. Taylor II, A. Heiser, V. Chi, F.P. Brooks Jr, S. Washburn, R. Superfine: Nature 397, 136 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bo N. J. Persson
    • 1
  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations