In the following, we want to concern ourselves with the scattering of an electron with energy E and momentum p = p Z at an infinitely extended potential step (Fig. 13.1). First we shall study this problem from the point of view of the oneparticlearticle interpretation of the Dirac equation and then, in Example 13.1, we shall look at the same problem using the framework of hole theory, understanding better the resulting situation, which looks paradoxical at first sight.1


Reflection Coefficient Potential Barrier Wave Packet Dirac Equation Potential Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Klein: Z. Phys. 53, 157 (1929).ADSMATHCrossRefGoogle Scholar
  2. 2.
    H.G. Dosch, J.H.D. Jensen, V.L. Mueller: Phys. Norv. 5, 151 (1971).Google Scholar
  3. 3.
    J.D. Bjorken, S.D. Drell: Relativistic Quantum Mechanics, ed. by L. Schiff, International Series in Pure and Applied Physics (McGraw-Hill, New York 1964).Google Scholar
  4. 4.
    F. Sauter: Z. Physik 73, 547 (1931).ADSCrossRefGoogle Scholar
  5. 5.
    This is discussed by J. Reinhardt, W. Greiner: Rep. Prog. Phys. 40, 219 (1977);ADSCrossRefGoogle Scholar
  6. 5a.
    and is covered in more detail in W. Greiner, W. Müller, J. Rafelski: Quantum Electrodynamics of Strong Fields (Springer, Berlin, Heidelberg 1985).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Walter Greiner
    • 1
    • 2
  1. 1.Institut für Theoretische PhysikJohann Wolfgang Goethe-Universität FrankfurtFrankfurt am MainGermany
  2. 2.Frankfurt am MainGermany

Personalised recommendations