Vortices in Type II Superconductors

  • Laurent-Patrick Lévy
Part of the Texts and Monographs in Physics book series (TMP)


In previous chapters, we observed that the free energy of an interface between normal and superconducting regions was negative Γ ns < 0 when the London penetration depth exceeded the coherence length (divided by \(\sqrt 2 \)). When there is a magnetic field, a highly divided structure is therefore energetically favoured, in which normal and superconducting phases coexist [442], in such a way as to limit the positive diamagnetic energy of screening currents. We shall now study this mixed state. It is easy to see that it will be governed by quantum effects. Consider a normal region enclosed within the superconductor and traversed by a magnetic field. Around this region, a screening current must circulate in the superconductor. Consider a circular path of radius r around the normal region. The Bohr-Sommerfeld quantisation rule (or equivalently, the second Ginzburg-Landau equation) applied to a Cooper pair in orbital (vortex) motion around this path, leads to
$${\oint {{p_s}dl = m} _*}\oint {{v_s}dl = {m_*}{v_s}2\pi r = nh} $$


Vortex Core Cooper Pair Triangular Lattice Vortex Flow Vortex Centre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 442.
    Abrikosov, A.A. (1957) Zh. Eksp. Teor. Fiz. 32, 1442Google Scholar
  2. 443.
    Cribier, D., Jacrot, B., Rao, L.M., Farnoux, B. (1964) Phys. Lett. 9, 106ADSCrossRefGoogle Scholar
  3. 444.
    Essmann, U. (1967) Phys. Lett. A 24, 526;ADSCrossRefGoogle Scholar
  4. 444a.
    Essmann, U. Phys. Status Solidi 20, 95CrossRefGoogle Scholar
  5. 445.
    Hess, H.F., Robinson, R.B., Dynes, R.C., Valles, J.M., Waszczak, J.V. (1989) Phys. Rev. Lett. 62, 214ADSCrossRefGoogle Scholar
  6. 446.
    Chang, A.M., Hallen, H.D., Harriott, L., Hess, H.F., Kao, H.L., Kwo, J., Miller, R.E., Wolfe, R., van der Ziel, J. (1992) Appl. Phys. Lett. 61, 1974ADSCrossRefGoogle Scholar
  7. 447.
    Essmann, U. (1972) Phys. Lett. A 41, 477ADSCrossRefGoogle Scholar
  8. 448.
    Abrikosov, A.A. (1961) Zh. Eksp. Teor. Fiz. 39; ibid. 41Google Scholar
  9. 449.
    Abrikosov, A.A. (1988) Fundamental Theory of Metals, 410–419. North HollandGoogle Scholar
  10. 450.
    Strand, A.R., Hemstead, C.F., Kim, Y.B. (1964) Phys. Rev. Lett. 13, 794ADSCrossRefGoogle Scholar
  11. 451.
    Caroli, C., de Gennes, P.G., Matricon, J. (1965) J. Physique Lettres 9, 307Google Scholar
  12. 452.
    de Gennes, P.G. (1989) Superconductivity of Metals and Alloys, 153. Addison-WesleyGoogle Scholar
  13. 453.
    Safar, H., Gammel, P., Bishop, D.J., Mitzi, D.B., Kapitulnick, A. (1992) Phys. Rev. Lett. 68, 2672ADSCrossRefGoogle Scholar
  14. 454.
    Bishop, D.J., Gammel, P.L., Murray, C.A. (1992) Science 255, 165ADSCrossRefGoogle Scholar
  15. 455.
    Charalambous, M., et al. (1992) Phys. Rev. B 45, 5091ADSCrossRefGoogle Scholar
  16. 456.
    Charalambous, M., et al. (1995) Phys. Rev. Lett. 75, 2578ADSCrossRefGoogle Scholar
  17. 457.
    Fisher, D.S., Fisher, M.P.A., Huse, D. (1991) Phys. Rev. B 43, 130ADSCrossRefGoogle Scholar
  18. 458.
    Huse, D., Fisher, M.P.A., Fisher, D.S. (1992) Nature 358, 553ADSCrossRefGoogle Scholar
  19. 459.
    Farell, D.E. (1994) In: Ginsberg, D. (Ed.) Physical Properties of High Temperature Superconductors. World ScientificGoogle Scholar
  20. 460.
    Blatter, G., Feigelman, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M. (1994) Rev. Mod. Phys. 66, 1125ADSCrossRefGoogle Scholar
  21. 461.
    Yeshurun, Y., Malozemoff, A.P. (1988) Phys. Rev. Lett. 60, 2202ADSCrossRefGoogle Scholar
  22. 462.
    Nelson, D.R., Vinokur, V.M. (1993) Phys. Rev. B 48, 13060ADSCrossRefGoogle Scholar
  23. 463.
    Bardeen, J., Stevens, M.J. (1965) Phys. Rev. 140, A1197ADSCrossRefGoogle Scholar
  24. 464.
    Giaver, I. (1965) Phys. Rev. Lett. 15, 825ADSCrossRefGoogle Scholar
  25. 465.
    Kim, Y.B., Stevens, M.J. (1969) In: Parks, R.D. (Ed.) Superconductivity, Chap. 19. M. Dekker, New YorkGoogle Scholar
  26. 466.
    Salomon, P.R., Otter Jr., F.A. (1967) Phys. Rev. 164, 608ADSCrossRefGoogle Scholar
  27. 467.
    Salomon, P.R. (1969) Phys. Rev. 179, 475ADSCrossRefGoogle Scholar
  28. 468.
    Vidal, F. (1973) Phys. Rev. B 8, 1982MathSciNetADSCrossRefGoogle Scholar
  29. 469.
    Thuneberg, E.V., Kurkijärvi, J., Rainer, D. (1984) Phys. Rev. B 29, 3914ADSCrossRefGoogle Scholar
  30. 470.
    Bean, C.P. (1962) Phys. Rev. Lett. 8, 250;ADSMATHCrossRefGoogle Scholar
  31. 470a.
    Bean, C.P. (1964) Rev. Mod. Phys. 36, 31ADSCrossRefGoogle Scholar
  32. 471.
    Anderson, P.W. (1962) Phys. Rev. Lett. 9, 309ADSCrossRefGoogle Scholar
  33. 472.
    Anderson, P.W., Kim, Y.B. (1964) Rev. Mod. Phys. 36, 39ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Laurent-Patrick Lévy
    • 1
  1. 1.MPI für Festkörperforschung, Laboratoire des Champs Magnétiques IntensesCNRSGrenoble Cedex 9France

Personalised recommendations