Skip to main content

Eph Receptors and Ephrins Are Key Regulators of Morphogenesis

  • Conference paper
Of Fish, Fly, Worm, and Man

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 29))

  • 98 Accesses

Abstract

Morphogenesis is the creation of form during development. In all vertebrate embryos cells move and change shape in precise patterns at specific times to generate the tissues and layers of the forming body. The molecular basis of the control of morphogenesis is not well understood. The Eph receptors and their ligands the ephrins, represent a cellular signalling system that is important for the correct enactment of morpho-genetic processes in the vertebrate and invertebrate embryo. These proteins are known to be key players in a number of morphogenetic events in the vertebrate embryo including axon guidance in the developing nervous system, neural crest migration and segmentation of the paraxial mesoderm and the hindbrain region of the neural plate. This review outlines the evidence for these conclusions and focuses mainly, but not exclusively, on the role of Eph/ephrin signalling in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartley TD, Hunt RW, Welcher AA, Boyle WJ, Parker VP, Lindberg RA, Lu HS, Colombero AM, Elliot RA, Guthrie BA, Holst PL, Shine JD, Toso RJ, Zhang M, Fernandez E, Trail G, Hunter T, Fox GM (1994) B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature 368: 558–560

    Article  PubMed  CAS  Google Scholar 

  • Bergemann A, Hwai-Jong C, Brambilla R, Klein R, Flanagan J (1995) Elf-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol Cell Biol 15: 4921–4929

    PubMed  CAS  Google Scholar 

  • Brambilla R, Schnapp A, Casagranda F, Labrador J, Bergeman A, Flanagan J, Pasquale E, Klein R (1995) Membrane bound LERK2 ligand can signal through three different Eph-related receptor tyrosine kinases. EMBO J 14: 3116–3126

    PubMed  CAS  Google Scholar 

  • Brambilla R, Bruckner K, Orioli D, Bergemann A, Flanagan J, Klein R (1996) Similarities and differences in the way transmembrane-type ligands interact with the Elk subclass of Eph receptors. Mol Cell Neurosci 8: 199–209

    Article  CAS  Google Scholar 

  • Brandli A, Kirschner M (1995) Molecular cloning of tyrosine kinases in the early Xenopus embryo: identification of Eck-related genes expressed in cranial neural crest cells of the second (hyoid) arch. Dev Dyn 203: 119–140

    Article  PubMed  CAS  Google Scholar 

  • Brennan C, Monshau B, Lindberg R, Guthrie B, Drescher U, Bonhoeffer F, Holder N (1997) Two Eph receptor tyrosine kinase ligands control axon growth and may be involved in the creation of the retinotectal map in zebrafish. Development 124: 655–664

    PubMed  CAS  Google Scholar 

  • Bruckner K, Klein R (1998) Signalling by Eph receptors and their ephrin ligands. Curr Opin Neurobiol 8: 375–382

    Article  PubMed  CAS  Google Scholar 

  • Bruckner K, Pasquale E, Klein R (1997) Tyrosine phosphorylation of trans-membrane ligands for Eph receptors. Science 275: 1640–1643

    Article  PubMed  CAS  Google Scholar 

  • Cheng H-J, Flanagan J (1994) Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek 1 receptor tyrosine kinases. Cell 79: 157–168

    Article  PubMed  CAS  Google Scholar 

  • Cheng H-J, Nakamoto M, Bergemann A, Flanagan, J (1995) Complementary gradients in expression and binding of Elf-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82: 371–381

    Article  PubMed  CAS  Google Scholar 

  • Cooke J, Xu Q, Wilson S, Holder N (1997) Characterisation of five novel zebrafish Eph-related receptor tyrosine kinases suggests roles in neural patterning. Dev Genes Evol 206: 515–531

    Article  CAS  Google Scholar 

  • Davis S, Gale N, Aldrich T, Maisonpierre P, Lhotak V, Pawson T, Goldfarb M, Yancopoulos G (1994) Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266: 816–819

    Article  PubMed  CAS  Google Scholar 

  • Donoghue M, Lewis R, Merlie J, Sanes J (1996) The eph kinase ligand AL-1 is expressed by rostral muscles and inhibits outgrowth from caudal muscles. Mol Cell Neurosci 8: 185–198

    Article  CAS  Google Scholar 

  • Drescher U, Kremoser C, Handwerker C, Loschinger J, Noda M, Bonhoeffer F (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to the ligands for Eph receptor tyrosine kinases. Cell 82: 359–370

    Article  PubMed  CAS  Google Scholar 

  • Durbin L, Brennan C, Shiomi K, Cooke J, Barrios A, Shanmugalingam S, Guthrie B, Lindberg R, Holder N (1998) Eph signalling is required for segmentation and differentiation of somites. Genes Dev 12: 3096–3109

    Article  PubMed  CAS  Google Scholar 

  • Ellis C, Kasmi F, Ganju P, Walls E, Panayotou G, Reith A (1996) A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12: 1727–1736

    PubMed  CAS  Google Scholar 

  • Eph Nomenclature Committee (1997) Unified nomenclature for Eph family receptors and their ligands. Cell 90: 403

    Article  Google Scholar 

  • Flenniken A, Gale N, Yancopoulos G, Wilkinson D (1996) Distinct and overlapping expression patterns of ligands for Eph related receptor tyrosine kinases during mouse development. Dev Biol 179: 382–401

    Article  PubMed  CAS  Google Scholar 

  • Frisen J, Yates P, McLaughlin T, Friedman C, O’Leary D, Barbacid M (1998) Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Gale N, Holland S, Valenzuela D, Flenniken A, Pan L, Ryan T, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson D, Pawson T, Davis S, Yancopoulos G (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Zhang J, Yokoyama M, Racey B, Dreyfus C, Black I, Zhou R (1996) Regulation of topographic projection in the brain: elf-1 in the hippocamposeptal system. Proc Natl Acad Sci USA 93: 11161–11166

    Article  PubMed  CAS  Google Scholar 

  • George S, Simokat K, Hardin J, Chisholm A (1998) The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 92: 633–643

    Article  PubMed  CAS  Google Scholar 

  • Gossler A, Hrabe de Angelis M (1998) Somitogenesis. Current Topics in Dev Biol 38: 225–287

    Article  CAS  Google Scholar 

  • Guthrie S, Lumsden A (1991) Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112: 221–229

    PubMed  CAS  Google Scholar 

  • Henkemeyer M, Marengere L, McGlade J, Olivier J, Conlon R, Holmyard D, Letwin K, Pawson T (1994) Immunolocalisation of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis. Oncogene 9: 1001–1014

    PubMed  CAS  Google Scholar 

  • Henkemeyer M, Orioli D, Henderson J, Saxton T, Roder J, Pawson T, Klein R (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86: 35–46

    Article  PubMed  CAS  Google Scholar 

  • Heyman I, Kent A, Lumsden A (1994) Cellular morphology and extracellular space at rhombomere boundaries in the chick embryo hindbrain. Dev Dyn 198: 241–253

    Article  Google Scholar 

  • Himanen J-P, Henkemeyer M, Nikolov D (1998) Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2. Nature 396: 486–491

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F (1987) A novel putative tyrosine kinase receptor encoded by the eph gene. Science 238: 1717–1720

    Article  PubMed  CAS  Google Scholar 

  • Hock B, Böhme B, Karn T, Yamamoto T, Kaibuchi K, Holtrich U, Holland S,Pawson T, Rübsamen-Waigmann H, Strebhardt K (1998) PDZ-domain-me-diated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc Natl Acad Sci USA 95: 9779–9784

    Article  CAS  Google Scholar 

  • Holash J, Pasquale E (1995) Polarized expression of the receptor protein tyrosine kinase Cek5 in the developing avian visual system. Dev Biol 172: 683–693

    Article  PubMed  CAS  Google Scholar 

  • Holder N and Klein R (1999) Eph receptors and ephrins: effectors of morpho-genesis. Development 126: 2033–2044

    PubMed  CAS  Google Scholar 

  • Holland S, Gale N, Mbamalu G, Yancopoulos G, Henkemeyer M, Pawson T (1996) Bidirectional signalling through the Eph-family receptor Nuk and its transmembrane ligands. Nature 383: 722–725

    Article  PubMed  CAS  Google Scholar 

  • Holland S, Gale N, Gish G, Roth R, Songyang Z, Cantley L, Henkemeyer M, Yancopoulos G, Pawson T (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 16: 3877–3888

    Article  PubMed  CAS  Google Scholar 

  • Irving C, Nieto A, DasGupta R, Charnay P, Wilkinson D (1996) Progressive spatial restriction of Sek-1 and krox-20 gene expression during hindbrain segmentation. Dev Biol 173: 26–38

    Article  PubMed  CAS  Google Scholar 

  • Jesuthasan S (1996) Contact inhibition/collapse and pathfinding of neural crest cells in the zebrafish trunk. Development 122: 381–389

    PubMed  CAS  Google Scholar 

  • Jones T, Chong L, Kim J, Xu R, Kung H, Daar I (1998) Loss of cell adhesion in Xenopus laevis embryos mediated by the cytoplasmic domain of XLerk, an erythropoietin-producing hepatocellular ligand. Proc Natl Acad Sci USA 95: 576–581

    Article  PubMed  CAS  Google Scholar 

  • Kenny D, Bronner-Fraser M, Marcelle C (1995) The receptor tyrosine kinase QEK5 mRNA is expressed in a gradient within the neural retina and the tecturn. Dev Biol 172: 708–716

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick T, Brown A, Lai C, Gassman M, Goulding M, Lemke G (1996) Expression of the Tyro4/Mek4/Cek4 gene specifically marks a subset of embryonic motor neurons and their muscle targets. Mol Cell Neurosci 7: 62–74

    Article  PubMed  CAS  Google Scholar 

  • Krull C, Lansford R, Gale N, Collazo A, Marcelle C, Yancopoulos G, Fraser S, Bronner-Fraser M (1997) Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol 7: 571–580

    Article  PubMed  CAS  Google Scholar 

  • Labrador J, Brambilla R, Klein R (1997) The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signalling. EMBO J 16: 3889–3897

    Article  PubMed  CAS  Google Scholar 

  • Lackmann M, Mann R, Kravets L, Smith F, Bucci T, Maxwell K, Howlett G, Olsson J, Vanden Bos T, Cerretti D, Boyd A (1997) Ligand for Eph-related kinase (LERK) 7 is the preferred high affinity ligand for the Hek receptor. J Biol Chem 272: 16521–16530

    Article  PubMed  CAS  Google Scholar 

  • Lackmann M, Oates A, Dottori M, Smith F, Do C, Power M, Kravets L, Boyd A (1998) Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J Biol Chem 273: 20228–20237

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Marcus R, Gale N, Morrison M, Mason C, Yancopoulos G (1996) Eph family receptors and their ligands distribute in opposing gradients in the developing mouse retina. Dev Biol 180: 786–789

    Article  PubMed  CAS  Google Scholar 

  • Meima L, Kljavin I, Moran P, Shih A, Winslow J, Carras I (1997a) AL-1 induced growth cone collapse of rat cortical neurons is correlated with REK-7 expression and rearrangement of the actin cytoskeleton. Eur J Neurosci 9: 177–188

    Article  PubMed  CAS  Google Scholar 

  • Meima L, Moran P, Mathews W, Carras, I (1997b) Lerk2 (ephrin-B1) is a collapsing factor of a subset of cortical growth cones and acts by a mechanism different from AL-1 (ephrin-A5). Mol Cell Neurosci 9: 314–328

    Article  PubMed  CAS  Google Scholar 

  • Moens C, Cordes S, Giorgianni M, Barsh G, Kimmel C (1998) Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 125: 381–391

    PubMed  CAS  Google Scholar 

  • Monschau B, Kremoser C, Ohta K, Tanaka H, Kaneko T, Yamada T, Handwerker C, Hornberger M, Loschinger J, Pasquale E, Siever D, Verderame M, Muller B, Bonhoeffer F, Drescher U (1997) Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J 16: 1258–1267

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto M, Cheng H-J, Friedman G, McLaughlin T, Hansen M, Yoon C, O’Leary D, Flanagan J (1996) Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86: 755–766

    Article  PubMed  CAS  Google Scholar 

  • Nieto MA, Gilardi-Hebenstreit P, Charnay P, Wilkinson DG (1992) A receptor protein tyrosine kinase implicated in the segmental patterning of the hind-brain and mesoderm. Development 116: 1137–1150

    PubMed  CAS  Google Scholar 

  • Ohta K, Nakamura M, Hirokawa K, Tanaka S, Iwana A, Suda T, Ando M, Tanaka H (1996) The receptor tyrosine kinase, Cek 8, is transiently expressed on subtypes of motor neurons in the spinal cord during development. Mech Dev 54: 59–69

    Article  PubMed  CAS  Google Scholar 

  • Ohta K, Iwamasa H, Drescher U, Terasaki H, Tanaka H (1997) The inhibitory effect on neurite outgrowth of motoneurons exerted by the ligands ELF-1 and RAGS. Mech Dev 64: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Ooi J, Yajnik V, Immanuel D, Gordon M, Moskow J, Buchberg A, Margolis B (1995) The cloning of Grb10 reveals a new family of Sh2 domain proteins. Oncogene 10: 1621–1630

    PubMed  CAS  Google Scholar 

  • Orioli D, Henkemeyer M, Lemke G, Klein R, Pawson T (1996) Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J 15: 6035–6049.

    PubMed  CAS  Google Scholar 

  • Orioli D, Klein R (1997) The Eph receptor family: axonal guidance by contact repulsion. Trends Genet 13: 354–359

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Lindberg R, Dixit V (1995) Receptor orphans find a family. Curr Biol 5: 986–989

    Article  PubMed  CAS  Google Scholar 

  • Park S, Frisen J, Barbacid M (1997) Aberrant axonal projections in mice lacking EphA8 ( Eek) tyrosine kinase receptors. EMBO J 16: 3106–3114

    Google Scholar 

  • Pasquale E (1997) The Eph family of receptors. Curr Opin Cell Biol 9: 608–615

    Article  PubMed  CAS  Google Scholar 

  • Pasquale E, Connor R, Rochcoll D, Schburch H, Risau W (1994) Cek5, a tyrosine kinase of the Eph subclass, is activated during neural retina differentiation. Dev Biol 163: 491–502

    Article  PubMed  CAS  Google Scholar 

  • Pasquale EB, Deerinck TJ, Singer SJ, Ellisman MH (1992) Cek5, a membrane receptor-type tyrosine kinase, is in neurons of the embryonic and postnatal avian brain. J Neurosci 12: 3956–3967

    PubMed  CAS  Google Scholar 

  • Scales J, Winning R, Renaud C, Shea L, Sargent T (1995) Novel members of the eph receptor kinase subfamily expressed during Xenopus development. Oncogene 11: 1745–1752

    PubMed  CAS  Google Scholar 

  • Schultz J, Ponting CP, Hofmann K, Bork P (1997) SAM as a protein interac- tion domain involved in developmental regulation. Protein Sci 6: 249–253

    Article  PubMed  CAS  Google Scholar 

  • Sheng M (1996) PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron 17: 575–578

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Robinson V. Patel K, Wilkinson D (1997) The EphA4 and EphBl receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr Biol 7: 561–570

    CAS  Google Scholar 

  • Stein E, Cerretti P, Daniel T (1996) Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells. J Biol Chem 271: 23588–23593

    Article  PubMed  CAS  Google Scholar 

  • Stein E, Lane A, Cerretti D, Schoecklmann H, Schroff A, Van Etten R, Daniel T (1998) Eph receptors discriminate specific ligand oligomers to determine alternative signalling complexes, attachment, and assembly responses. Genes Dev 12: 667–678

    Article  PubMed  CAS  Google Scholar 

  • Stern C, Keynes R (1987) Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo. Development 99: 261–272

    PubMed  CAS  Google Scholar 

  • Theil T, Frain M, Gilardi-Hebenstreit P, Flenniken A, Charnay P, Wilkinson P (1998) Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 125: 443–452

    PubMed  CAS  Google Scholar 

  • Torres R, Firestein BL, Dong H, Staudinger J, Olson EN, Huganir RL, Bredt DS, Gale NW, Yancopoulos GD (1998) PDZ proteins bind, cluster and synaptically co-localize with Eph receptors and their ephrin ligands. Neuron 21: 1453–1463

    Article  PubMed  CAS  Google Scholar 

  • Tuzi N, Gullick W (1994) Eph, the largest known family of putative growth factor receptors. Br J Cancer 69: 417–421

    Article  PubMed  CAS  Google Scholar 

  • Van der Geer P, Hunter T, Lindberg R (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10: 251–337

    Article  PubMed  Google Scholar 

  • Wang H, Anderson D (1997) Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18: 383–396

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Anderson D (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-A4. Cell 93: 741–753

    Article  PubMed  CAS  Google Scholar 

  • Weinstein D, Rahman S, Ruiz J and Hemmati-Brivanlou A (1996) Embryonic expression of eph signalling factors in Xenopus. Mech Dev 57: 133–144

    Article  PubMed  CAS  Google Scholar 

  • Winning RS, Scales J, Sargent T (1996) Disruption of cell adhesion in Xenopus embryos by Pagliaccio, an Eph-class receptor tyrosine kinase. Dev Biol 179: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Winslow J, Moran P, Valverde J, Shih A, Yuan J, Wong S, Tsai S, Goddard A. Henzel W, Hefti F, Beck K, Caras I (1995) Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 14: 973–981

    CAS  Google Scholar 

  • Xu Q, Alldus G, Holder N, Wilkinson DG (1995) Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121: 4005–4016

    PubMed  CAS  Google Scholar 

  • Xu. Q, Alldus G, Macdonald R, Wilkinson D, Holder N (1996) Function of the Eph-related receptor tyrosine kinase gene rtkl is required for regional specification in the zebrafish forebrain. Nature 381: 319–322

    Article  PubMed  Google Scholar 

  • Zhang J-H, Cerretti D, Yu T, Flanagan J, Zhou R (1996) Detection of ligands in regions anatomically connected to neurons expressing the Eph receptor Bsk: potential roles in neuron-target interaction. J Neurosci 16: 7182–7192

    PubMed  CAS  Google Scholar 

  • Zisch A, Kalo MS, Chong LD, Pasquale EB (1998) Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene 20: 2657–2670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holder, N., Durbin, L., Cooke, J., Wilson, S. (2000). Eph Receptors and Ephrins Are Key Regulators of Morphogenesis. In: Nüsslein-Volhard, C., Krätzschmar, J. (eds) Of Fish, Fly, Worm, and Man. Ernst Schering Research Foundation Workshop, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04264-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04264-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04266-3

  • Online ISBN: 978-3-662-04264-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics