Skip to main content

Genetic Dissection of Heart Development

  • Conference paper
Of Fish, Fly, Worm, and Man

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 29))

  • 103 Accesses

Abstract

Genetic analysis has been a powerful tool to identify genes and pathways in early patterning and cell fate determination in Drosophila and Caenorhabditis elegans (Nusslein-Volhard 1994). Lacking a vertebrate model system for large-scale genome-wide screens has limited a direct genetic approach toward vertebrate pattern formation in the past. Luckily, gene functions and pathways are often conserved from invertebrates to vertebrates and studying these pathways has been fruitful in understanding vertebrate pattern formation. Some of the best known examples include the role of the hox genes in patterning the vertebrate nervous system, the TGF-β family and wnt signaling pathways in dorsoventral patterning, and the hedgehog pathway in nervous system and limb patterning [for review see Pattern Formation during Development (1997) Cold Spring Harbor Symposium Quantum Biology, vol. 62].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azpiazu N, Frasch M (1993) tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7: 1325–1340

    Google Scholar 

  • Bauer H, Meier A, Hild M, Stachel S, Economides A, Hazelett D, Harland RM, Hammerschmidt M (1998) Follistatin and noggin are excluded from the zebrafish organizer. Dev Biol 204: 488–507

    Article  PubMed  CAS  Google Scholar 

  • Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118: 719–729

    PubMed  CAS  Google Scholar 

  • Brownlie A, Donovan A, Pratt SJ, Paw BH, Oates AC, Brugnara C, Witkowska HE, Sassa S, Zon LI (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet 20: 244–250

    Article  PubMed  CAS  Google Scholar 

  • Chen J-N, Fishman MC (1997) Development of Cardiovascular System: Molecules to Organisms. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen J-N, Fishman MC (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122: 3809–3816

    PubMed  CAS  Google Scholar 

  • Chen J-N, Haffter P, Odenthal J, Vogelsang E, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Nusslein-Volhard C (1996) Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123: 293–302

    PubMed  CAS  Google Scholar 

  • Chen J-N, van Eeden FJ, Warren KS, Chin A, Nüsslein-Volhard C, Haffter P, Fishman MC (1997) Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124: 4373–4382.

    PubMed  CAS  Google Scholar 

  • Cleaver OB, Patterson KD, Krieg PA (1996) Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia. Development 122: 3549–3556

    PubMed  CAS  Google Scholar 

  • Copenhaver WM (1924) Experiments on the development of the heart of Amblystoma punctatum. J Exp Zool 43: 321–371

    Article  Google Scholar 

  • Danos MC, Yost HJ (1995) Linkage of cardiac left-right asymmetry and dorsal-anterior development in Xenopus. Development 121: 1467–1474

    PubMed  CAS  Google Scholar 

  • Danos MC, Yost HJ (1996) Role of notochord in specification of cardiac left-right orientation in zebrafish and Xenopus. Dev Biol 177: 96–103

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123: 37–46

    PubMed  CAS  Google Scholar 

  • Evans SM, Yan W, Murillo MP, Ponce J, Papalopulu N (1995) tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman. Development 121: 3889–3899

    Google Scholar 

  • Fishman MC, Chien KR (1997) Fashioning the vertebrate heart: earliest embryonic decisions. Development 124: 2099–2117

    PubMed  CAS  Google Scholar 

  • Frasch M (1995) Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374: 464–467

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Yan W, Mohun TJ, Evans SM (1998) Vertebrate tinman homologues XNkx2–3 and XNkx2–5 are required for heart formation in a functionally redundant manner. Development 125: 4439–4449

    PubMed  CAS  Google Scholar 

  • Gaiano N, Amsterdam A, Kawakami K, Allende M, Becker T, Hopkins N (1996) Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383: 829–832

    Article  PubMed  CAS  Google Scholar 

  • Gates MA, Kim L, Egan ES, Cardozo T, Sirotkin HI, Dougan ST, Lashkari D, Abagyan R, Schier AF, Talbot WS (1999) A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res 9: 334–347

    PubMed  CAS  Google Scholar 

  • Geisler R, Rauch GJ, Baier H, van Bebber F, Brobeta L, Dekens MP, Finger K, Fricke C, Gates MA, Geiger H, Geiger-Rudolph S, Gilmour D, Glaser S, Gnugge L, Habeck H, Hingst K, Holley S, Keenan J, Kim A, Knaut H, Lashkari D, Maderspacher F, Martyn U, Neuhauss S, Neumann C, Nicolson T, Pelegri F, Ray R, Rick JM, Roehl H, Roeser T, Schauerte HE, Schier AF, Schonberger U, Schonthaler HB, Schulte-Merker S, Seydler C, Talbot WS, Weiler C, Nusslein-Volhard C, Haffter P (1999) A radiation hybrid map of the zebrafish genome. Nat Genet 23: 86–89

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AM, Fishman MC (1998) Notochord regulates cardiac lineage in zebrafish embryos. Dev Biol 201: 247–252

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AM, Ticho BS, Fishman MC (1998) Patterning the heart’s left-right axis: from zebrafish to man. Dev Genet 22: 278–287

    Article  PubMed  CAS  Google Scholar 

  • Grow MW, Krieg PA (1998) Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2–3 and XNkx2–5. Dev Biol 204: 187–196

    Article  PubMed  CAS  Google Scholar 

  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, FurutaniSeiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36

    Google Scholar 

  • Harvey RP (1996) NK-2 homeobox genes and heart development. Dev Biol 178: 203–216

    Article  PubMed  CAS  Google Scholar 

  • Hild M, Dick A, Rauch GJ, Meier A, Bouwmeester T, Haffter P, Hammerschmidt M (1999) The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development 126: 2149–2159

    PubMed  CAS  Google Scholar 

  • Hukriede NA, Joly L, Tsang M, Miles J, Tellis P, Epstein JA, Barbazuk WB, Li FN, Paw B, Postlethwait JH, Hudson TJ, Zon LI, McPherson JD, Chevrette M, Dawid IB, Johnson SL, Ekker M (1999) Radiation hybrid mapping of the zebrafish genome In Process Citation]. Proc Natl Acad Sci USA 96: 9745–9750

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte-Merker S (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124: 4457–4466

    PubMed  CAS  Google Scholar 

  • Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119: 969

    PubMed  CAS  Google Scholar 

  • Logan M, Pagan-Westphal SM, Smith DM, Paganessi L, Tabin CJ (1998) The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Nusslein-Volhard C (1994) Of flies and fishes. Science 266: 572–574

    Article  PubMed  CAS  Google Scholar 

  • Piedra ME, Icardo JM, Albajar M, Rodriguez-Rey JC, Ros MA (1998) Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94: 319–324

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell AF, Yost HJ (1998) Molecular mechanisms of vertebrate left-right development. Trends Genet 14: 459–465

    Article  PubMed  CAS  Google Scholar 

  • Rauch GJ, Hammerschmidt M, Blader P, Schauerte HE, Strahle U, Ingham PW, McMahon AP, Haffter P (1997) Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb Symp Quant Biol 62: 227–234

    Article  PubMed  CAS  Google Scholar 

  • Ryan AK, Blumberg B, Rodriguez-Esteban C, Yonei-Tamura S, Tamura K, Tsukui T, de la Pena J, Sabbagh W, Greenwald J, Choe S, Norris DP, Robertson EJ, Evans RIVI, Rosenfeld MG, Izpisua Belmonte JC (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394: 545–551

    Article  PubMed  CAS  Google Scholar 

  • Schier AF, Joyner AL, Lehmann R, Talbot WS (1996) From screens to genes: prospects for insertional mutagenesis in zebrafish. Genes Dev 10: 3077–3080

    Article  PubMed  CAS  Google Scholar 

  • Serbedzija GN, Chen J-N, Fishman MC (1998) Regulation in the heart field of zebrafish. Development 125: 1095–1101

    PubMed  CAS  Google Scholar 

  • Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E, Kaplan S, Jackson D, de Sauvage F, Jacob H, Fishman MC (1999) Zebrafish genetic map with 2000 microsatellite markers. Genomics 58: 219–232

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D (1999) HAND proteins: molecular mediators of cardiac development and congenital heart disease. Trends Cardiovasc Med 9: 11–8

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D, Cserjesi P, Olson EN (1995) A subclass of bHLH proteins required for cardiac morphogenesis. Science 270: 1995–1999

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16: 154–160

    Article  PubMed  CAS  Google Scholar 

  • Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, Mohideen MA, Neuhauss SC, Solnica-Krezel L, Schier AF, Zwartkruis F, Stemple DL, Malicki J, Driever W, Fishman MC (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123: 285–292

    PubMed  CAS  Google Scholar 

  • Stainier DY, Lee RK, Fishman MC (1993) Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119: 31–40

    Google Scholar 

  • Warren KS, Fishman MC (1998) “Physiological genomics”: mutant screens in zebrafish. Am J Physiol 275: H1–7

    Google Scholar 

  • Xu X, Yin Z, Hudson JB, Ferguson EL, Frasch M (1998) Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. Genes Dev 12: 2354–2370

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi H, Garg V, Matsuoka R, Thomas T, Srivastava D (1999) A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 283: 1158–1161

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC, Hamada H, Noji S (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94: 299–305

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Talbot WS, Schier AF (1998) Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92: 241–251

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, JN., Fishman, M.C. (2000). Genetic Dissection of Heart Development. In: Nüsslein-Volhard, C., Krätzschmar, J. (eds) Of Fish, Fly, Worm, and Man. Ernst Schering Research Foundation Workshop, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04264-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04264-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04266-3

  • Online ISBN: 978-3-662-04264-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics