Skip to main content

Embryonic Patterning of Xenopus Mesoderm by Bmp-4

  • Conference paper
Of Fish, Fly, Worm, and Man

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 29))

  • 101 Accesses

Abstract

During embryogenesis three germ layers — ecto-, meso-, and endoderm — give rise to all somatic cells of the vertebrate body. From mesoderm, the skeleton, muscle, connective tissue, heart, endocrine and exocrine organs, blood, and the immune system develop. Mesoderm also plays a critical role during axis formation in the vertebrate embryo. During gastrulation, the early dorsal mesoderm, or Spemann organizer, has a central inductive role. The Spemann organizer transplanted to the ventral side of a host embryo induces a twin embryo containing a complete duplicated embryonic axis including the notochord, somites, and central and peripheral nervous system. The organizer is also present in all other vertebrates analyzed where it elicits comparable effects. In chicken and mice this structure is the node, in fish the embryonic shield, which when transplanted induces ectopic axial tissue (Storey et al. 1992; Beddington 1994; Shih and Fraser 1996). The organizer dorsalizes surrounding

A Development of Xenopus mesoderm. Mesoderm develops from an equatorial belt of cells located between the animal and vegetal pole of the gastrula embryo, the marginal zone (left). The marginal zone is already specified dorsoventrally and will give rise to a characteristic sequence of mesodermal tissues shown for the tadpole embryo (right). B Evolutionary conservation of dorsoventral (d/v) patterning in Xenopus and Drosophila. The expression of Xenopus chordin and Drosophila short gastrulation (sog) is reversed with respect to the d/v axis as is expression of Bmp-4 and its Drosophila homolog decapentaplegic (dpp). These factors antagonize each other leading to d/v patterning of Xenopus mesoderm into notochord (no), muscle (mu),and ventral mesoderm (vm), as well as Drosophila blastoderm into amnioserosa (as), dorsal ectoderm (de), neural tissue (ne),and mesoderm (me)

mesoderm, induces and patterns the neural plate, and sets in motion a cascade of secondary inductions (Hamburger 1988; Harland and Gerhart 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aono A, Hazama M, Notoya K, Taketomi S, Yamasaki H, Tsukuda R, Sasaki S and Fujisawa Y (1995) Potent ectopic bone-inducing activity of bone morphogenetic protein 4/7 heterodimer. Biochem Biophys Res Commun 210: 679–677

    Google Scholar 

  • Arendt D, Nübler-Jung K (1994) Inversion of dorsoventral axis? Nature 371: 26

    PubMed  CAS  Google Scholar 

  • Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120: 613–20

    PubMed  CAS  Google Scholar 

  • Bhushan A, Chen Y, Vale W (1998) Smad7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev Biol 200: 260–268

    PubMed  CAS  Google Scholar 

  • Candia AF, Watabe T, Hawley HB, Onichtchouk D, Zhang Y, Derynck R, Niehrs C, Cho KWY (1997) Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124: 4467–4480

    PubMed  CAS  Google Scholar 

  • Casellas R, Hemmati-Brivanlou A (1998) Xenopus Smad7 inhibits both the ac- tivin and BMP pathways and acts as a neural inducer. Dev Biol 198: 1–12

    Google Scholar 

  • Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389: 85–9

    PubMed  CAS  Google Scholar 

  • Christian JL, Moon RT (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7: 13–28

    PubMed  CAS  Google Scholar 

  • Clement JH, Fettes P, Knöchel S, Lef J, Knöchel W (1995) Bone morphogenetic protein 2 in the early development of Xenopus laevis. Mech Dev 52: 357–370

    PubMed  CAS  Google Scholar 

  • Dale L, Slack JM (1987) Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 100: 279–95

    PubMed  CAS  Google Scholar 

  • Dale L, Howes G, Price BM, Smith JC (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115: 573–85

    PubMed  CAS  Google Scholar 

  • De Celis JF, Barrio R, Kafatos FC (1996) A gene complex acting downstream of dpp in Drosophila wing morphogenesis. Nature 381: 421–424

    PubMed  Google Scholar 

  • De Robertis EM, Sasai Y (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380: 37–40

    PubMed  Google Scholar 

  • Dosch R, Gawantka V, Delius H, Blumenstock C, Niehrs C (1997) Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124: 2325–2334

    PubMed  CAS  Google Scholar 

  • Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morpho-genetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9: 2795–807

    PubMed  CAS  Google Scholar 

  • Fainsod A, Steinbeisser H, De Robertis EM (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13: 5015–25

    PubMed  CAS  Google Scholar 

  • Fainsod A, Deißler K, Yelin R, Marom M, Epstein M, Pillemer G, Steinbeisser H, Blum M (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of Bmp-4. Mech Dev 63: 39–50

    PubMed  CAS  Google Scholar 

  • Ferguson EL (1996) Conservation of dorsal-ventral patterning in arthropods and chordates. Curr Opin Genet Dev 6: 424–431

    PubMed  CAS  Google Scholar 

  • Ferguson EL, Anderson KV (1992) Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71: 451–461

    PubMed  CAS  Google Scholar 

  • Francois V, Solloway M, O’Neill JW, Emery J, Bier E (1994) Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev 8: 2602–16

    PubMed  CAS  Google Scholar 

  • Friedle H, Rastegar S, Paul H, Kaufmann E, Knöchel W (1998) Xvent-1 mediates BMP-4-induced suppression of the dorsal-lip-specific early response gene XFD-l’ in Xenopus embryos. EMBO J 17: 2298–307

    PubMed  CAS  Google Scholar 

  • Frisch A, Wright CVE (1998) XBMPRII, a novel Xenopus type II receptor me- diating BMP signalling in embryonic tissues. Development 125: 431–442

    PubMed  CAS  Google Scholar 

  • Gawantka V, Delius H, Hirschfeld K, Blumenstock C, Niehrs C (1995) Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J 14: 6268–79

    PubMed  CAS  Google Scholar 

  • Gawantka V, Pollet N, Delius H, Pfister R, Vingron M, Nitsch R, Blumenstock C, Niehrs C (1998) Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech Dev 77: 95–141

    PubMed  CAS  Google Scholar 

  • Graff JM, Thies RS, Song JJ, Celeste AJ, Melton DA (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79: 169–79

    PubMed  CAS  Google Scholar 

  • Graff JM, Bansal A, Melton DA (1996) Xenopus Mad proteins transduce distinct subsets of signals for the TGFb superfamily. Cell 85: 479–487

    Google Scholar 

  • Green JB, Smith JC (1990) Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347: 391–4

    PubMed  CAS  Google Scholar 

  • Green JBA, New HV, Smith JC (1992) Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71: 731–739

    PubMed  CAS  Google Scholar 

  • Grimm S, Pflugfelder GO (1996) Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271: 1601–1604

    PubMed  CAS  Google Scholar 

  • Gurdon JB, Harger P, Mitchell A, Lemaire P (1994) Activin signalling and response to a morphogen gradient. Nature 371: 487–92

    PubMed  CAS  Google Scholar 

  • Hamburger V (1988). The heritage of experimental embryology. Oxford University Press, New York

    Google Scholar 

  • Harland RM (1994) The transforming growth factor beta family and induction of the vertebrate mesoderm: bone morphogenetic proteins are ventral inducers. Proc Natl Acad Sci USA 91: 10243–6

    PubMed  CAS  Google Scholar 

  • Harland RM, Gerhart J (1997) Formation and function of Spemann’s organizer. Ann Rev Cell Dev Biol 13: 611–667

    CAS  Google Scholar 

  • Hata A, Lagna G, Massague J, Hemmati-Brivanlou A (1998) Smad6 inhibits BMP/Smadl signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12: 186–97

    PubMed  CAS  Google Scholar 

  • Hawley SH, Wunnenberg SK, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KW (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9: 2923–35

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–95

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17: 78–89

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton D (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88: 13–17

    PubMed  CAS  Google Scholar 

  • Hogan BM (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10: 1580–1594

    PubMed  CAS  Google Scholar 

  • Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann M, Ferguson EL (1995) A conserved system for dorso-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376: 249–253

    PubMed  CAS  Google Scholar 

  • Holley SA, Neul JL, Attisano L, O’Connor MB, DeRobertis EM, Ferguson EL (1996) The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing dpp from activating its receptor. Cell 86: 607–617

    PubMed  CAS  Google Scholar 

  • Hoodless P, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L, Wrana J (1996) MADRI, a Mad-related protein that functions in BMP2 signaling pathways. Cell 85: 489–500

    PubMed  CAS  Google Scholar 

  • Iemura S-I, Yamamoto T, Takagi C, Uchiyama H, Natsume T, Shimasaki S, Sugino H, Ueno N (1998) Direct binding of follistatin to a complex of bone morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryos. Proc Natl Acad Sci USA 95: 9337–9342

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Yoshioka H, Ohuchi H, Noji S, Nohno T (1995) Truncated type II receptor for BMP-4 induces secondary axial structures in Xenopus embryos. Biochem Biophys Res Commun 216: 26–33

    PubMed  CAS  Google Scholar 

  • Jones CM, Lyons KM, Lapan PM, Wright CV, Hogan BL (1992) DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115: 639–47

    PubMed  CAS  Google Scholar 

  • Jones CM, Armes N, Smith JC (1996) Signalling by TGF-beta family members: short range effects of Xnr-2 and BMP-4 contrast with long-range effects of activin. Curr Biol 6: 1468–1475

    PubMed  CAS  Google Scholar 

  • Jones CM, Smith JC (1998) Establishment of a BMP-4 morphogen gradient by long-range inhibition. Dev Biol 194: 12–17

    PubMed  CAS  Google Scholar 

  • Kessler DS, Melton DA (1994) Vertebrate embryonic induction: mesodermal and neural patterning. Science 266: 596–604

    PubMed  CAS  Google Scholar 

  • Kimelman D, Christian JL, Moon RT (1992) Synergistic principles of development: overlapping patterning systems in Xenopus mesoderm induction. Development 116: 1–9

    PubMed  CAS  Google Scholar 

  • Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte MS (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124: 4457–66

    PubMed  CAS  Google Scholar 

  • Knecht A, Harland RM (1997) Mechanisms of dorsal-ventral patterning in noggin-induced neural tissue. Development 124: 2477–2488

    PubMed  CAS  Google Scholar 

  • Köster M, Plessow S, Clement JH, Lorenz A, Tiedemann H, Knöchel W (1991) Bone morphogenetic protein 4 (BMP-4), a member of the TGF-beta family, in early embryos of Xenopus laevis: analysis of mesoderm inducing activity. Mech Dev 33: 191–9

    PubMed  Google Scholar 

  • Ladher R, Mohun Ti, Smith JC, Snape AM (1996) Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 122: 2385–2394

    PubMed  CAS  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262: 713–8

    PubMed  CAS  Google Scholar 

  • Lecuit T, Brook WJ, Ng M, Calleja M, Sun H, Cohen S (1996) Two distinct mechanisms for long-range patterning by decapentaplegic in the Drosophila wing. Nature 381: 387–392

    PubMed  CAS  Google Scholar 

  • Lemaire P (1996) The coming of age of ventralising homeobox genes in amphibian development. Bioessays 18: 701–704

    PubMed  CAS  Google Scholar 

  • Liu F, Pouponnot C, Massague J (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 11: 3157–67

    PubMed  CAS  Google Scholar 

  • Maeno M, Ong RC, Suzuki A, Ueno N, Kung HF (1994) A truncated bone morphogenetic protein 4 receptor alters the fate of ventral mesoderm to dorsal mesoderm: roles of animal pole tissue in the development of ventral mesoderm. Proc Natl Acad Sci USA 91: 10260–4

    PubMed  CAS  Google Scholar 

  • Marchant L, Linker C, Ruiz P, Guerrero N, Mayor R (1998) The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev Biol 15: 319–329

    Google Scholar 

  • Marqués G, Musacchio M, Shimmel MJ, Wünnenburg-Stapleton K, Cho KWY, O’Connor MB (1997) Production of a dpp activity gradient in the early Drosophila embryo through the opposing actions of SOG and TLD proteins. Cell 91: 417–426

    PubMed  Google Scholar 

  • Massague J, Hata A, Liu F (1997) TGF-beta signalling through the Smad pathway. Trends Cell Biol 7: 187–192

    CAS  Google Scholar 

  • Meersman G, Verschueren K, Nelles L, Blumenstock C, Kraft H, Wuytens G, Remade J, Kozak CA, Tylzanowsky P, Niehrs C, Huylebroeck D (1997) The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in vivo and transcriptional activation. Mech Dev 61: 127–140

    Google Scholar 

  • Moos MJ, Wang S, Krinks M (1995) Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer. Development 121: 4293–301

    PubMed  CAS  Google Scholar 

  • Nakayama T, Gardner H, Berg LK, Christian JL (1998a) Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis. Genes Cells 3: 387–394

    PubMed  CAS  Google Scholar 

  • Nakayama T, Snyder MA, Grewal SS, Tsuneizumi K, Tabata T, Christian JL (1998b) Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. Development 125: 857–867

    Google Scholar 

  • Neave B, Holder N, Patient R (1997) A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in the zebrafish. Mech Dev 62: 103–246

    Google Scholar 

  • Nellen D, Burke R, Struhl G, Basler K (1996) Direct and long-range action of a dpp morphogen gradient. Cell 85: 357–368

    PubMed  CAS  Google Scholar 

  • Nguyen VH, Schmid B, Trout J, Connors SA, Ekker M, Mullins MC (1998) Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev Biol199: 93–110

    Google Scholar 

  • Niehrs C (1996) Mad connection to the nucleus. Nature 381:561–562 Nieuwkoop PD (1969) The formation of mesoderm in Urodelean Amphibians. I Induction by the Endoderm. Roux Arch 162: 341–373

    Google Scholar 

  • Nieuwkoop PD (1973) The organisation centre of the amphibian embryo, its origin, spatial organisation and morphogenetic action. Adv Morph 10: 1–39

    CAS  Google Scholar 

  • Nishimatsu S, Suzuki A, Shoda A, Murakami K, Ueno N (1992) Genes for bone morphogenetic proteins are differentially transcribed in early amphibian embryos. Biochem Biophys Res Commun 186: 1487–95

    PubMed  CAS  Google Scholar 

  • Nishimatsu S-I, Thomsen GH (1998) Ventral mesoderm induction and patterning by bone morphogenetic proteins. Mech Dev 74: 75–88

    PubMed  CAS  Google Scholar 

  • Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, Blumenstock C, Niehrs C (1996) The Xvent-2 homeobox gene is part of the BMP-4 signaling pathway controlling dorsoventral patterning of Xenopus mesoderm. Development 122: 3045–3053

    PubMed  CAS  Google Scholar 

  • Onichtchouk D, Glinka A, Niehrs C (1998) Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development 125: 1447–1456

    PubMed  CAS  Google Scholar 

  • Papalopulu N, Kintner C (1996) A Xenopus gene, Xbr-1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. Dev Biol174: 104–114

    Google Scholar 

  • Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP4. Cell 86: 589–598

    PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM (1997) Cleavage of chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91: 407–416

    PubMed  CAS  Google Scholar 

  • ReemKalma Y, Lamb T, Frank D (1995) Competition between noggin and BMP-4 activities may regulate dorsalization during Xenopus development. Proc Natl Acad Sci USA 92: 12141–12145

    CAS  Google Scholar 

  • Reilly KM, Melton DA (1996) Short-range signaling by candidate morpho-gens of the TGF-beta family and evidence for a relay mechanism of induction. Cell 86: 743–754

    PubMed  CAS  Google Scholar 

  • Salic AN, Kroll KL, Evans LM, Kirschner MW (1997) Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124: 4739–4748

    PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–90

    Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376: 333–6

    PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Piccolo S, De Robertis EM (1996) Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15: 4547–4555

    PubMed  CAS  Google Scholar 

  • Sauman I, Berry SJ (1994) An actin infrastructure is associated with eukaryotic chromosomes: structural and functional significance. Eur J Cell Biol 64: 348–56

    PubMed  CAS  Google Scholar 

  • Schmidt J, Francois V, Bier E, Kimelman D (1995a) Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning. Development 121: 4319–4328

    Google Scholar 

  • Schmidt JE, Suzuki A, Ueno N, Kimelman D (1995b) Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. Dev Biol 169: 37–50

    PubMed  CAS  Google Scholar 

  • Schmidt JE, von Dassow G, Kimelman D (1996) Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development 122: 1711–1721

    PubMed  CAS  Google Scholar 

  • Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139: 1347–1358

    PubMed  CAS  Google Scholar 

  • Shih J, Fraser SE (1996) Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122: 1313–22

    PubMed  CAS  Google Scholar 

  • Sive HL (1993) The frog prince-ss: a molecular formula for dorsoventral patterning in Xenopus. Genes Dev 7: 1–12

    PubMed  CAS  Google Scholar 

  • Slack JM (1993) Embryonic induction. Mech Dev 41: 91–107

    PubMed  CAS  Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–40

    PubMed  CAS  Google Scholar 

  • Smith WC, Knecht AK, Wu M, Harland RM (1993) Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361: 547–9

    PubMed  CAS  Google Scholar 

  • Staehling-Hampton K, Laughon AS, Hoffmann FM (1995) A Drosophila protein related to the human zinc finger transcription factor PRDIUMBPI/HIVEP1 is required for dpp signaling. Development 121: 3393–3403

    PubMed  CAS  Google Scholar 

  • Steinbeisser H, Fainsod A, Niehrs C, Sasai Y, De Robertis EM (1995) The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA. EMBO J 14: 5230–43

    PubMed  CAS  Google Scholar 

  • Storey KG, Crossley JM, De RE, Norris WE, Stern CD (1992) Neural induc- tion and regionalisation in the chick embryo. Development 114: 729–41

    PubMed  CAS  Google Scholar 

  • Sturtevant MA, Biehs B, Marin E, Bier E (1997) The spalt gene links the A/P compartment boundary to a linear adult structure in the Drosophila wing. Development 124: 21–32

    PubMed  CAS  Google Scholar 

  • Suzuki A, Thies RS, Yamaji N, Song JJ, Wozney JM, Murakami K, Ueno N (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci USA 91: 10255–9

    PubMed  CAS  Google Scholar 

  • Suzuki A, Ueno N, Hemmati-Brivanlou A (1997) Xenopus msxl mediates epidermal induction and neural inhibition by BMP4. Development 124: 3037–44

    Google Scholar 

  • Suzuki A, Chang C, Yingling JM, Wang XF, Hemmati BA (1997a) Smad5 induces ventral fates in Xenopus embryo. Dev Biol 184: 402–5

    PubMed  CAS  Google Scholar 

  • Suzuki A, Kaneko E, Maeda J, Ueno N (1997b) Mesoderm induction by BMP4 and —7 heterodimers. Biochem Biophys Res Commun 232: 153–6

    PubMed  CAS  Google Scholar 

  • Suzuki A, Kaneko E, Ueno N, Hemmati-Brivanlou A (1997c) Regulation of ‘epidermal induction by BMP2 and BMP7 signaling. Dev Biol 189: 112–22

    PubMed  Google Scholar 

  • Takase M, Imamura T, Sampath TK, Takeda K, Ichijo H, Miyazono K, Kawabata M (1998) Induction of Smad6 mRNA by bone morphogenetic proteins. Biochem Biophys Res Commun 244: 26–9

    PubMed  CAS  Google Scholar 

  • Thomsen GH (1996) Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP2/4 receptor. Development 122:2359–2366

    Google Scholar 

  • Tidman-Ault C, Dirksen ML, Jamrich M (1996) A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc Natl Acad Sci USA 93: 6415–6420

    Google Scholar 

  • Wang S, Krinks M, Kleinwaks L, Moos MJ (1997) A novel Xenopus homo- logue of bone morphogenetic protein-7 (BMP-7). Genes Funct 1: 259–71

    PubMed  CAS  Google Scholar 

  • Wharton KA, Ray RP, Gelbart WM (1993) An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117: 807–822

    PubMed  CAS  Google Scholar 

  • Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C (1993) Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 7: 2120–2134

    PubMed  CAS  Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376: 331–3

    PubMed  CAS  Google Scholar 

  • Wilson PA, Lagna G, Suzuki A, Hemmati-Brivanlou A (1997) Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smadl. Development 124: 3177–84

    PubMed  CAS  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BLM (1995) Bone morphogenetic protein 4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9: 2105–2116

    PubMed  CAS  Google Scholar 

  • Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122: 2977–86

    PubMed  CAS  Google Scholar 

  • Zhang Y, Musci T, Derynck R (1997) The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Curr Biol 7: 270–6

    PubMed  Google Scholar 

  • Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94: 703–714

    PubMed  CAS  Google Scholar 

  • Zimmerman LB, De Jesús-Escobar J-E, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein-4. Cell 86: 599–606

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niehrs, C., Dosch, R., Onichtchouk, D. (2000). Embryonic Patterning of Xenopus Mesoderm by Bmp-4. In: Nüsslein-Volhard, C., Krätzschmar, J. (eds) Of Fish, Fly, Worm, and Man. Ernst Schering Research Foundation Workshop, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04264-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04264-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04266-3

  • Online ISBN: 978-3-662-04264-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics