Random Tiling Models for Quasicrystals

  • E. Cockayne
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 13)

Abstract

Random tiling models for quasicrystals were introduced in 1985 [1] in the context of discussing the possible role of tiling entropy in stabilizing the thenrecently-discovered quasicrystalline phase [2]. In fact, provided that certain conditions hold, entropic stabilization of a quasicrystalline tiling in three dimensions (3D) will produce a structure whose diffraction pattern contains Bragg peaks. An excellent and thorough overview of random tiling theory can be found in Henley’s 1991 review article [3]. The aim of this lecture is to give a pedagogical review of the most important ideas and results in random tiling theory, including more recent developments.

Keywords

Entropy Anisotropy Manifold Convolution AlCo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Elser V., Phys. Rev. Lett. 54 (1985) 1730.ADSCrossRefGoogle Scholar
  2. [2]
    Shechtman D., Blech I., Gratias D. and Cahn J.W., Phys. Rev. Lett. 53 (1984) 1951.Google Scholar
  3. [3]
    Henley C.L., “Random Tiling Models”, in Quasicrystals: The State of the Art, edited by D.P. DiVincenzo and P.J. Steinhardt ( World Scientific, Singapore, 1991 ) p. 429.Google Scholar
  4. [4]
    Grünbaum B. and Shephard G.C., Tilings and Patterns, edited by W.H. Freeman and Company (New York, 1986 ) p. 16.Google Scholar
  5. [5]
    Steinhardt P.J. and Ostlund S., The Physics of Quasicrystals ( World Scientific, Singapore, 1987 ) p. 12.MATHGoogle Scholar
  6. [6]
    Donnadieu P., Harmelin M., Su H.L., Seifert H.J., Effenberg G. and Aldinger F., Z. Metallk. 88 (1997) 33.Google Scholar
  7. [7]
    Hahn T., International Union of Crystallography, International Tables for X-ray Crystallography ( Reidel, Dordrecht, 1983 ) p. 774.Google Scholar
  8. [8]
    Fristedt B. and Gray L., A Modern Approach to Probability Theory ( Birkhäuser, Boston, 1997 ) p. 6 - 8.MATHGoogle Scholar
  9. [9]
    Berthé V., in Beyond Quasicrystals, edited by F. Axel and D. Gratias ( Les Editions de Physique, Les Ulis, France/Springer, Berlin, 1995 ) p. 441.CrossRefGoogle Scholar
  10. [10]
    Katz A., in Beyond Quasicrystals, edited by F. Axel and D. Gratias ( Les Éditions de Physique, Les Ulis, France/Springer, Berlin, 1995 ) p. 141.CrossRefGoogle Scholar
  11. [11]
    Jade M., Phys. Rev. B 34 (1986) 4685.ADSCrossRefGoogle Scholar
  12. [12]
    Widom M., Strandburg K.J. and Swendsen R.H., Phys. Rev. Lett. 58 (1987) 706.ADSCrossRefGoogle Scholar
  13. [13]
    Cockayne E., J. Phys. A: Math. Gen. 27 (1994) 6107.MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    Mihalkovic M., in Proceedings of the International Conference on Aperiodic Crystals, Aperiodic 94, edited by G. Chapuis and W. Paciorek ( World Scientific, Singapore, 1995 ) p. 552.Google Scholar
  15. [15]
    Cockayne E., Phys. Rev. B 51 (1995) 14958.Google Scholar
  16. [16]
    Stampfli P., Helv. Phys. Acta 59 (1986) 1260.Google Scholar
  17. [17]
    Smith A.P., J. Non-cryst. Solids 153 (1993) 258.ADSCrossRefGoogle Scholar
  18. [18]
    Gähler F., Doctoral dissertation (Swiss Federal Institute of Technology, 1988).Google Scholar
  19. [19]
    Baake M., Klitzing R. and Schlottmann M., Physica 191A (1992) 554.Google Scholar
  20. [20]
    Janssen T., in Beyond Quasicrystals, edited by F. Axel and D. Gratias D. ( Les Éditions de Physique, Les Ulis, France/Springer, Berlin, 1995 ) p. 128.Google Scholar
  21. [21]
    Oxborrow M. and Henley C.L., Phys. Rev. B 48 (1993) 6966.Google Scholar
  22. [22]
    Henley C.L., Phys. Rev. B 43 (1991) 993.Google Scholar
  23. [23]
    Adler R.L., Kohneim A.G. and McAndrew M.H., Trans. Amer. Math. Soc. 114 (1965) 309.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Kalugin P.A., Kitayev A.Yu., Levitov L.S., J. Phys. Lett. 46 (1985) L601.CrossRefGoogle Scholar
  25. [25]
    Van Smaalen S., Phys. Rev. B 39 (1989) 3850.Google Scholar
  26. [26]
    Elser V., Acta Cryst. A 42 (1986) 36.Google Scholar
  27. [27]
    Boudard M., de Boissieu M., Audier M., Kycia S., Goldman A.J., Hennion B., Bellissent R., Quilichini M. and Janot C., in Proceedings of the Fifth International Conference on Quasicrystals, edited by C. Janot and R. Mosseri ( World Scientific, Singapore, 1995 ) p. 172.Google Scholar
  28. [28]
    Capitan M.J., Bessiere M., Lefebvre S., Calvayrac Y., Quivy A. and Gratias D., in Proceedings of the Fifth International Conference on Quasicrystals, edited by C. Janot and R. Mosseri ( World Scientific, Singapore, 1995 ) p. 652.Google Scholar
  29. [29]
    de Boissieu M., personal communication.Google Scholar
  30. [30]
    MacMahon P.A., Combinatory Analysis ( The University Press, Cambridge, 1984 ) p. 1.Google Scholar
  31. [31]
    Mosseri R., Bailly F. and Sire C., J. Non-cryst. Solids 153 (1993) 201.ADSCrossRefGoogle Scholar
  32. [32]
    Destainville N., Mosseri R. and Bailly F., J. Stat. Phys. 87 (1997) 697.MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    Widom M., Destainville N., Mosseri R. and Bailly F., in Quasicrystals, edited by S. Takeuchi and T. Fujiwara T. ( World Scientific, Singapore, 1998 ) p. 83.Google Scholar
  34. [34]
    Joseph D. and Baake M., J. Phys. A: Math. Gen. 29 (1996) 6709.ADSMATHCrossRefGoogle Scholar
  35. [35]
    Li W.X., Park H. and Widom M., J. Stat. Phys. 66 (1992) 1.ADSMATHCrossRefGoogle Scholar
  36. [36]
    Newman M.E.J. and Henley C.L., Phys. Rev. B 52 (1995) 6386.Google Scholar
  37. [37]
    Peyrière J., in Beyond Quasicrystals, edited by F. Axel and D. Gratias ( Les Editions de Physique, Les Ulis, France/Springer, Berlin, 1995 ) p. 465.CrossRefGoogle Scholar
  38. [38]
    Widom M., Phys. Rev. Lett. 70 (1993) 2094.ADSCrossRefGoogle Scholar
  39. [39]
    Kalugin P.A., J. Phys. A: Math. Gen. 27 (1994) 3599.MathSciNetADSMATHCrossRefGoogle Scholar
  40. [40]
    de Gier J. and Nienhuis B., Phys. Rev. Lett. 76 (1996) 2918.ADSCrossRefGoogle Scholar
  41. [41]
    de Gier J. and Nienhuis B., J. Stat. Phys. 87 (1997) 415.ADSMATHCrossRefGoogle Scholar
  42. [42]
    de Gier J. and Nienhuis B., J. Phys. A: Math. Gen. 31 (1998) 2141.ADSMATHCrossRefGoogle Scholar
  43. [43]
    Krajcí M., Hafner J. and Mihalkoviç M., Phys. Rev. B 55 (1997) 843.Google Scholar
  44. [44]
    Steurer W., Haibach T., Zhang B., Kek S. and Lück R., Acta Cryst. B 49 (1993) 661.Google Scholar
  45. [45]
    Cockayne E., Phillips R., Kan X.B., Moss S.C., Robertson J.L., Ishimasa T. and Mori M., J. Non-cryst. Solids 153 (1993) 140.ADSCrossRefGoogle Scholar
  46. [46]
    Elser V., Philos. Mag. B 73 (1996) 641.Google Scholar
  47. [47]
    Elser V. and Henley C.L., Phys. Rev. Lett. 55 (1985) 2883.ADSCrossRefGoogle Scholar
  48. [48]
    Cockayne E. and Widom, M., Phys. Rev. Lett. 81 (1998) 598.ADSCrossRefGoogle Scholar
  49. [49]
    Cockayne E. and Widom M., Philos. Mag. A 77 (1998) 593.ADSCrossRefGoogle Scholar
  50. [50]
    Lançon F. and Billard L., J. Phys. France 49 (1988) 249.CrossRefGoogle Scholar
  51. [51]
    Burkov S.E., J. Stat. Phys. 65 (1991) 395.MathSciNetADSMATHCrossRefGoogle Scholar
  52. [52]
    Li X.Z., Acta Cryst. B 51 (1995) 265.Google Scholar
  53. [53]
    Li X.Z, Frey F., Steurer W. and Kuo K.H., in Proceedings of the Fifth International Conference on Quasicrystals, edited by C. Janot and R. Mosseri ( World Scientific, Singapore, 1995 ) p. 202.Google Scholar
  54. [54]
    Ritsch S., Beeli C., Nissen H.-U. and Lück R., Philos. Mag. A 71 (1995) 671.Google Scholar
  55. [55]
    Steurer W. and Kuo K.H., Acta Cryst. B 46 (1990) 703.Google Scholar
  56. [56]
    Mihalkovic M., Zhu W.-J., Henley C.L. and Phillips R., Phys. Rev. B 53 (1996) 9021.Google Scholar
  57. [57]
    Hiraga K., J. Non-cryst. Solids 153 (1993) 28.Google Scholar
  58. [58]
    Duneau M. and Audier M., Figures 17 and 18 in Lectures in Quasicrystals, edited by F. Hippert and D. Gratias ( Les Éditions de Physique, Les Ulis, France, 1994 ) p. 283.Google Scholar
  59. [59]
    Cockayne E., Widom M., Launois P., Fettweis M. and Dénoyer F., in Proceedings of the International Conference on Aperiodic Crystals, Aperiodic 94, edited by G. Chapuis and W. Paciorek ( World Scientific, Singapore, 1995 ) p. 578.Google Scholar
  60. [60]
    de Bruijn N.G., Math. Proc. A84 (1981) 39.Google Scholar
  61. [61]
    Kalugin P., JETP Lett. 49 (1989) 467.ADSGoogle Scholar
  62. [62]
    Dotera T. and Steinhardt P.J., Phys. Rev. Lett. 72 (1994) 1670.ADSCrossRefGoogle Scholar
  63. [63]
    Gähler F., in Proceedings of the Fifth International Conference on Quasicrystals, edited by C. Janot and R. Mosseri R. ( World Scientific, Singapore, 1995 ) p. 236.Google Scholar
  64. [64]
    Fettweis M., Launois P., Dénoyer F., Reich R. and Lambert M., Phys. R.v. B. 49 (1994) 15573.ADSCrossRefGoogle Scholar
  65. [65]
    Kalning M., Kek S., Krane H.G., Dorna V., Press W. and Steurer W., Phys. Rev. B. 55 (1997) 187.Google Scholar
  66. [66]
    Fettweis M., Launois P., Reich R., Wittmann R. and Dénoyer F., Phys. R.v. B. 51 (1995) 6700.ADSCrossRefGoogle Scholar
  67. [67]
    Cockayne E., in preparation.Google Scholar

Copyright information

© Springer-Verlag France 2000

Authors and Affiliations

  • E. Cockayne
    • 1
    • 2
  1. 1.Department of Applied PhysicsYale UniversityNew HavenUSA
  2. 2.Ceramics Division, Materials Science and Engineering LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations