Fractality and the Kinetics of Chaos

  • G. M. Zaslavsky
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 13)


A kinetic equation describes the evolution of the distribution function F(x) in the space of a set of variables (x) which can be a subset of the phase space coordinates. Typically, the kinetic description of a system emerges from two basic characteristics of the dynamical process: its random features and its reduced subset (\(\left( {\bar x} \right)\)) of variables. The first characteristic, randomness, consists of a reasonable physical assumption like the Boltzmann’s Stossansatz or the random phase approximation (see for example G.M. Zaslaysy, Chaos in dynamical systems, Harwood Academic publishers, New York, 1989). The second characteristic, typically, is based on a separation of slow and fast variables and averaging procedure over the latter ones.


Phase Space Spectral Function Fractional Derivative Chaotic Dynamic Chaotic Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.S. Abdullaev and G.M. Zaslaysky, Phys. Rev. E 51 (1995) 3901.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    G.M. Zaslaysky and M. Edelman, Phys. Rev. E 56 (1997) 5210.ADSGoogle Scholar
  3. [3]
    A.A. Chernikov, R.Z. Sagdeev and G.M. Zaslaysky, in Topological Fluid Dynamics, edited by H.K. Moffatt and A. Tsinober ( Cambridge Univ. Press, 1990 ) p. 45.Google Scholar
  4. [4]
    G.M. Zaslaysky, D. Stevens and H. Weitzner, Phys. Rev. E 48 (1993) 1683.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G.M. Zaslaysky, M. Edelman and B.A. Niyazov, Chaos 7 (1997) 159.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Benkadda, S. Kassibrakis, R.B. White and G.M. Zaslaysky, Phys. Rev. E 55 (1997) 4909.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G.M. Zaslaysky, in Topological Aspects of The Dynamics of Fluids and Plasmas, edited by H.K. Moffatt, G.M. Zaslaysky, P. Compte and M. Tabor ( Kluwer, Dordrecht, 1992 ) p. 481.Google Scholar
  8. [8]
    G.M. Zaslaysky, Physica D 76 (1994) 110.Google Scholar
  9. [9]
    G.M. Zaslaysky, Chaos 4 (1994) 25.Google Scholar
  10. [10]
    M.F. Shlesinger, G.M. Zaslaysky and J. Klafter, Nature 363 (1993) 31.ADSCrossRefGoogle Scholar
  11. [11]
    E.W. Montroll and M.F. Shlesinger, in Studies in Statistical Mechanics, edited by J. Lebowitz and E.W. Montroll ( North-Holland, Amsterdam, 1984 ) p. 1.Google Scholar
  12. [12]
    M. Shlesinger, G.M. Zaslaysky and U. Frish, in Lévy Flights and Related Topics in Physics (Springer, 1995 ).Google Scholar
  13. [13]
    V. Afraimovich, Chaos 7 (1997) 12.MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    V. Afraimovich and G.M. Zaslaysky, Phys. Rev. E 55 (1997) 5418.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J.M. Berger and M. Mandelbrot, IBM Journal 7 (1963) 224.CrossRefGoogle Scholar
  16. [16]
    M. Shlesinger, Ann. Rev. Phys. Chem. 39 (1988) 269.ADSCrossRefGoogle Scholar
  17. [17]
    M. Kac, in Probability and Related Topics in Physical Sciences, Proc. of Summer Seminar, Boulder, Colorado, 1957 ( Interscience, NY, 1958 ).Google Scholar
  18. [18]
    J. Meiss, Chaos 7 (1997) 39.MathSciNetCrossRefGoogle Scholar
  19. [19]
    R.B. White, S. Benkadda, S. Kassibrakis and G.M. Zaslaysky, to be published.Google Scholar
  20. [20]
    G.M. Zaslaysky and B.A. Niyazov, Physics Reports 283 (1997) 73.ADSCrossRefGoogle Scholar
  21. [21]
    ; P. Grassberger and I. Procaccia, Physica D 13 (1984) 34.Google Scholar
  22. [22]
    S.C. Venkataramani, T.M. Aantonsen Jr. and E. Ott, Phys. Rev. Lett. 78 (1997) 3864.MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    G.A. Margulis, Funkshional Anal. i Prilozh. 3 (1969) 80; ibid. 4 (1970) 62.MathSciNetGoogle Scholar
  24. [24]
    U. Frisch and G. Parisi, in Turbulence and Predictability of Geophysical Flows and Climate Dynamics, edited by M. Ghill, R. Benzi and G. Parisi ( North Holland, Amsterdam, 1985 ).Google Scholar
  25. [25]
    ; T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Schraiman, Phys. Rev. A 33 (1986) 1141.Google Scholar
  26. [26]
    G. Paladin and A. Vulpiani, Phys. Rep. 156 (1987)147.Google Scholar
  27. [27]
    A. Rényi, in Probability Theory ( North-Holland, Amsterdam, 1970 ).Google Scholar
  28. [28]
    A.I. Saichev and G.M. Zaslaysky, Chaos ‘7 (1997) 753.Google Scholar
  29. [29]
    G.M. Zaslaysky and M. Edelman, unpublished.Google Scholar

Copyright information

© Springer-Verlag France 2000

Authors and Affiliations

  • G. M. Zaslavsky
    • 1
    • 2
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Department of PhysicsNew York UniversityNew YorkUSA

Personalised recommendations