The Reactivity of Iron

  • Ralf R. Haese

Abstract

For our understanding of interactions between living organisms and the solid earth it is fascinating to investigate the reactivity of iron at the interface of the bio- and geosphere. Similar to manganese (Chap. 11), iron occurs in two valence states as oxidized ferric iron, Fe(III), and reduced ferrous iron, Fe(II). Two principal biological processes are of importance: Microorganisms such as magnetotactic bacteria or phytoplankton (Chap. 2.2 and Sect. 7.3) depend on the uptake of iron as a prerequisite for their cell growth (assimilation). Others conserve energy from the reduction of Fe(III) to maintain their physiology (dissimilation). In this case, ferric iron serves as an electron acceptor which is also termed oxidant. Apart from biotic reactions, manifold abiotic reactions occur depending on thermodynamic and kinetic conditions.

Keywords

Phosphorus Dust Silicate Manifold Uranium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller, R.C., 1980. Diagnetic processes near the sediment-water interface of Long Island Sound. 2. Fe and Mn. Advances in Geophysics, 22: 351–415.Google Scholar
  2. Aller, R.C. and DeMaster, D.J., 1984. Estimates of particle flux and reworking at the deep-sea floor using 234TH/238U disequilibrium. Earth and Planetary Science Letters, 67: 308–318.Google Scholar
  3. Aller, R.C, 1990. Bioturbation and manganese cycling in hemipelagic sediments. Philosophical Transactions of the Royal Society of London, 331: 51–68.Google Scholar
  4. Aller, R.C, 1994. The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, 02, and Corg. flux on diagenetic reaction balances. Journal of Marine Research, 52: 259–295.Google Scholar
  5. Balzer, W., 1982. On the distribution of iron and manganese at the sediment/water interface: thermodynamic versus kinetic control. Geochimica et Cosmochimica Acta, 46: 1153–1161.Google Scholar
  6. Bell, P.E., Mills, A.L. and Herman, J.S., 1987. Biogeochemical conditions favoring magnetite formation during anaerobic iron reduction. Applied and Environmental Microbiology, 53: 2610–2616.Google Scholar
  7. Berger, W.H., Smetacek, V.S. and Wefer, G., 1989. Ocean productivity and paleoproductivity-an overview. In: Berger, W.H., Smetacek, V.S. and Wefer, G. (eds), Productivity of the ocean: present and past. Wiley & Sons, Chichester, pp. 1–34.Google Scholar
  8. Berner, R.A., 1970. Sedimentary pyrite formation. American Journal of Science, 268: 1–23.Google Scholar
  9. Berner, R.A., 1971. Principals of chemical sedimentology. McGraw-Hill, New York, 240 pp.Google Scholar
  10. Bewers, J.M. and Yeats, P.A., 1977. Oceanic residence times of trace metals. Nature, 268: 595–598.Google Scholar
  11. Beyer, M.E., Bond, A.M. and McLaughlin, R.J.W., 1975. Simultaneous polarographic determination of ferrous, ferric and total iron in standard rocks. Analytical Chemistry, 47: 479–482.Google Scholar
  12. Biber, M.V., Dos Santos Afonso, M. and Stumm, W., 1994. The coordination chemistry of weathering: IV. Inhibition of the dissolution of oxide minerals. Geochimica et Cosmochimica Acta, 58: 1999–2010.Google Scholar
  13. Bischoff, J.L., 1972. A ferroan nontronite from the red Sea geothermal system. Clays and Clay Minerals., 20: 217–223.Google Scholar
  14. Blank, M., Leinen, M. and Prospero, J.M., 1985. Major Asian aelian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific. Nature, 314: 84–86.Google Scholar
  15. Blesa, M.A., Marinovich, H.A., Baumgartner, E.C. and Marota, A.J.G., 1987. Mechanism of dissolution of magnetite by oxalic acid-ferrous ion solution. Inorganic Chemistry, 26: 3713–3717.Google Scholar
  16. Bohm, J., 1925. Uber Aluminium und Eisenoxide I (in German). Zeitschrift der Anorganischen Chemie, 149: 203–218.Google Scholar
  17. Broecker, W.S., Spencer, D.W. and Craig, H., 1982. GEOSECS Pacific Expedition: Hydrographic Data. U.S. Govermaent Printing Office, Washington, DC, 3: 137 pp.Google Scholar
  18. Buresh, R.J. and Moraghan, J.T., 1976. Chemical reduction of nitrate by ferrous iron. Journal of Environmental Quality, 5: 320–325.Google Scholar
  19. Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, CM. and Berner, R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54: 149–155.Google Scholar
  20. Canfield, D.E., 1988. Sulfate reduction and the diagenesis of iron in anoxic marine sediments. Ph.D. thesis, Yale Univ., 248pp.Google Scholar
  21. Canfield, D.E., 1989. Reactive iron in marine sediments. Geochimica et Cosmochimica Acta, 51: 619–632.Google Scholar
  22. Canfield, D.E., Raiswell, R. and Bottrell, S., 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292: 659–683.Google Scholar
  23. Canfield, D.E., 1993. Organic matter oxidation in marine sediments. In: Wollast, R., Mackenzie, F.T. and Chou, L. (eds). Interactions of C, N, P and S biogeochemical cycles and global change. NATO ASI Series, 4, Springer, Berlin, Heidelberg, NY, pp. 333–363.Google Scholar
  24. Canfield, D.E., Thamdrup, B. and Hansen, J.W., 1993a. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57: 3867–3883.Google Scholar
  25. Canfield, D.E., Jorgensen, B.B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N.B., Thamdrup, B., Hansen, J.W., Nielsen L.P. and Hall, P.O.J., 1993b. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 113: 27–40.Google Scholar
  26. Canfield, D.E., 1997. The geochemistry of river particles from the continental USA: Major elements. Geochimica Cosmochimica Acta, 61: 3349–3365.Google Scholar
  27. Carlson, T.N. and Prospero, J.M., 1972. The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. Journal of Applied Meteorology, 11: 283–297.Google Scholar
  28. Carothers, W.W., Adami, L.H. and Rosenbauer, R.J., 1988. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated C02-siderite. Geochimica et Cosmochimica Acta, 52: 2445–2450.Google Scholar
  29. Chavez, F.P. and Barber, R.T., 1987. An estimate of new production in the equatorial PAcific. Deep-Sea Research, 34: 1229–1243.Google Scholar
  30. Chester, R., 1990. Marine Geochemistry. Chapman & Hall, London, 698 pp.Google Scholar
  31. Chou, T.T. and Zhou, L., 1983. Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Science Society American Journal, 47: 225–232.Google Scholar
  32. Cole, T.G. and Shaw, W.F., 1983. The nature and origin of authigenic smectites in some recent marine sediments. Clay Minerals, 18: 239–252.Google Scholar
  33. Cole, T.G., 1985. Composition, oxygen isotope geochemistry, and orgin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific. Geochimica et Cosmochimica Acta, 49: 221–235.Google Scholar
  34. Coleman, M.L., Hedrick, D.B., Lovley, D.R., White, D.C. and Pye, K., 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361: 436–438.Google Scholar
  35. Cornwell, J.C. and Morse, J.W., 1987. The characterization of iron sulfide minerals in anoxic marine sediments. Marine Chemistry, 22: 193–206.Google Scholar
  36. Crosby, S.A., Glasson, D.R., Cuttler, A.H., Butler, I., Turner, D.R., Whitfield, M. and Millward, G.W., 1983. Surface areas and porosities of Fe(III)- and Fe(II)-derived oxyhydroxides. Environmental Science and Technology, 17: 709–713.Google Scholar
  37. De Angelis, M., Barkov, N.I. and Petrov, V.N., 1987. Aerosol concentration over the last climatic cycle (160 kyr) from an Antarktic ice core. Nature, 325: 318–321.Google Scholar
  38. De Baar, H.J.W. and Suess, E., 1993. Ocean carbon cycle and climate change — An introduction to the interdisciplinary union symposium. Global and Planetery Change, 8: VII-XI.Google Scholar
  39. Decarreau, A., Bonnin, D., Badauth-Trauth, D., Couty, R. and Kaiser, P., 1987. Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Minerals, 22: 207–223.Google Scholar
  40. Donaghay, PL., 1991. The role of episodic atmospheric nutrient inputs in chemical and biological dynamics of oceanic ecosystems. Oceanography, 4: 62–70.Google Scholar
  41. Dos Santos Afonso, M. and Stumm, W., 1992. The reductive dissolution of iron (III) (hydr) oxides by hydrogen sulfide. Langmuir, 8: 1671–1676.Google Scholar
  42. Duce, R.A., Liss, PS., Merrill, J.T., Atlas, E.L., Buat-Menard, P., Hicks, B.B., Miller, J.M., Prospero, J.M., Arimoto, R., Church, T.M., Ellis, W., Galloway, J.N., Hansen, L., Jickells, T.D., Knap, A.H., Reinhardt, K.H., Schneider, B., Soudine, A., Tokos, J.J., Tsunogai, S., Wollast, R. and Zhou, M., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5: 193–259.Google Scholar
  43. Ehrenreich, A. and Widdel, F., 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology, 60: 4517–4526.Google Scholar
  44. Ellwood, B.B., Chrzanowski, T.H., Hrouda, E, Long, G.J. and Buhl, M.L., 1988. Siderite formation in anoxic deep-sea sediments: A synergetic bacterially controlled process with important implications in palaeomagnetism. Geology, 16: 980–982.Google Scholar
  45. Ferdelman, T.G., 1980. The distribution of sulfur, iron, manganese, copper, and uranium in a salt marsh sediment core as determined by a sequential extraction method. Masters thesis, University Delaware.Google Scholar
  46. Figueres, G., Martin, J.M. and Meybeck, M., 1978. Iron behaviour in the Zaire estuary. Netherlands Journal of Sea Research, 12: 329–337.Google Scholar
  47. Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D. and Hartman B, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1090.Google Scholar
  48. Froelich, P.N., Bender, M.L., Luedtke, N.A., Heath, G.R. and DeVries, T., 1982. The marine phosphorus cycle. American Journal of Science, 282: 474–511.Google Scholar
  49. GESAMP (Group of Experts on the Scientific Aspects of Marine Pollution), 1987. Land/sea boundary flux of contaminants: Contributions from rivers. GESAMP Rep. Stud., 32: 172 pp.Google Scholar
  50. Gingele, F., 1992. Zur Klimaabhangigen Bildung biogener und terrigener Sedimente und ihre Veranderungen durch die Friihdiagnese im zentralen und ostlichen Siidatlantik (in German). Berichte, 26, Fachbereich Geowissenschaften, Universitat Bremen, 202 pp.Google Scholar
  51. Goldberg, E.D. and Sposito, G., 1984. A chemical model od phosphate adsorption by soils I. Reference oxide minerals. Soil Science Society American Journal, 48: 772–778.Google Scholar
  52. Haese, R.R., Wallmann, K., Kretzmann, U., Müller, P.J. and Schulz, H.D., 1997. Iron species determination to investigate early diagenetic reactivity in marine sediments. Geochimica et Cosmochimica Acta, 61: 63–72.Google Scholar
  53. Haese, R.R., Petermann, P., Dittert, L. and Schulz, H.D., 1998. The early Diagenesis of iron in pelagic sediments-a multidisciplinary approach. Earth and Planetary Science Letters, 157: 233–248.Google Scholar
  54. Haese, R.R., Schramm, J., Rutgers van der Loeff, M.M. and Schulz, H.D., in press. A comparative study of iron and manganese diagenesis in continental slope and deep sea basin sediments of Uruguay (SW Atlantic). Geologische Rundschau.Google Scholar
  55. Harder, H., 1976. Nontronite synthesis at low temperatures. Chemical Geology, 18: 169–180.Google Scholar
  56. Harder, H., 1978. Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals, 26: 65–72.Google Scholar
  57. Hart, T.J., 1934. On the phytoplankton of the south-west Atlantic and the Bellinghausen Sea, 1929–31. Discovery Reports, VIII.Google Scholar
  58. Hein, J.R., Yeh, H-W. and Alexander, E., 1979. Origin of iron-rich montmorillonite from the manganese nodule belt of the north eqatorial Pacific. Clays and Clay Minerals, 27: 185–194.Google Scholar
  59. Hunter, K.A., 1983. On the estuarine mixing of dissolved substances in relation to colloid stability and surface properties. Geochimica et Cosmochimica Acta, 47: 467–473.Google Scholar
  60. Huttel, M., Ziebis, W., Forster, S. and Luther, G.W. III., 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochimica Cosmochimica Acta, 62: 613–631.Google Scholar
  61. Jensen, H.S., Mortensen, P.B., Andersen, F.O., Rasmussen, E. and Jensen, A., 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnology and Oceanography, 40: 908–917.Google Scholar
  62. Johnson, K.S., Coale, K.H., Elrod, V.A. and N.W., T., 1994. Iron photochemistry in seawater from equatorial Pacific. Marine Chemistry, 46: 319–334.Google Scholar
  63. Johnson, K.S., Gordon, R.M. and Coalae, K.H., 1997. What controls dissolved iron concentrarions in the world ocean? Marine Chemistry, 57: 137–161.Google Scholar
  64. Jorgensen, B.B., 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Marine Biology, 41: 7–17.Google Scholar
  65. Kester, D.R. and Pytkowicz, R.M., 1967. Determination of apparent dissociation constants of phosphoric acid in sea water. Limnology and Oceanography, 12: 243–252.Google Scholar
  66. Kostka, J.E. and Luther, G.W. III., 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica et Cosmochimica Acta, 58: 1701–1710.Google Scholar
  67. Kostka, J.E. and Nealson, K.H., 1995. Dissolution and reduction of magnetite by bacteria. Environmental Science and Technology, 29: 2535–2540.Google Scholar
  68. Kostka, J.E., Nealson, K.H., Wu, J. and Stucki, J.W., 1996. Reduction of the structural Fe(III) in smectite by a pure culture of the Fe-reducing bacterium, Shewanella putrefaciens strain MR-1. Clays and Clay Minerals, 44: 522–529.Google Scholar
  69. Koning, I., Drodt, M., Suess, E. and Trautwein, A.X., 1997. Iron reduction through the tan-green color transition in deep-sea sediments. Geochimica et Cosmochimmica Acta, 61: 1679–1683.Google Scholar
  70. Krauskopf, K.B., 1956. Factors controlling the concentration of thirteen trace metals in seawater. Geochimica et Cosmochimica Acta, 12: 331–334.Google Scholar
  71. Krom, M.D. and Berner, R.A., 1980. Adsorption of phosphate in anoxic marine sediments. Limnology and Oceanography, 25: 797–806.Google Scholar
  72. Kuma, K., Nishioka, J. and Matsunaga, K., 1994. Controls on iron(III) hydroxide solubility in seawater: The influence of pH and natural organic chelators. Limnology and Oceanography, 41: 396–407.Google Scholar
  73. Lear, P.R. and Stucki, J.W., 1989. Effects of iron oxidation state on the specific surface area of Nontronite. Clays and Clay Minerals, 37: 547–552.Google Scholar
  74. Leventhal, J. and Taylor, C, 1990. Comparison of methods to determine degree of pyritization. Geochimica et Cosmochimica Acta, 54: 2621–2625.Google Scholar
  75. Lord, C.L. III., 1980. The chemistry and cycling of iron, manganese, and sulfur in salt marsh sediments. Ph.D. thesis, University Delaware, 177 pp.Google Scholar
  76. Lovley, D.R., 1987. Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiology Journal, 5: 375–399.Google Scholar
  77. Lovley, D.R. and Phillips, E.J.P., 1988. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Applied and Environmental Microbiology, 54: 1472–1480.Google Scholar
  78. Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) Reduction. Microbiology Reviews, 55: 259–287.Google Scholar
  79. Lovley, D.R., 1997. Microbial Fe(III) reduction in subsurface environments. FEMS Microbiological Reviews, 20: 305–313.Google Scholar
  80. Lovley, D.R., Coates, J.D., Saffarini, D. and Loneran, D.J., 1997. Diversity of dissimilatory Fe(III)-reducing bacteria. In: Winkelman, G. and. Carrano, C.J. (eds), Iron and related transition metals in microbial metabolism. Harwood Academic Publishers, Switzerland, pp. 187–215.Google Scholar
  81. Lyle, M., 1983. The brown-green color transition in marine sediments: A marker of the Fe(III)-Fe(II) redox boundary. Limnology and Oceanography, 28: 1026–1033.Google Scholar
  82. Mackenzie, F.T. and Garrels, R.M., 1966. Chemical mass balance between rivers and oceans. America Journal of Science, 264: 507–525.Google Scholar
  83. Martin, J.M. and Whitfield, M., 1983. The significance of the river input of chemical elements to the ocean. In: Wong, C.S., Boyle, E., Bruland, K.W., Burton, J.D. and Goldberg, E.D. (eds), Trace metals in sea water. Plenum Press, NY, pp. 265–296.Google Scholar
  84. Martin, J.H., Gordon, R.M., Fitzwater, S.E. and Broenkow, W.W., 1989. VERTEX: phytoplankton/iron studies in the gulf of Alaska. Deep-Sea Research, 36: 649–680.Google Scholar
  85. Martin, J.H., 1990. Glacial-interglacial C02 change: The iron hypothesis. Paleoceanography, 5: 1–13.Google Scholar
  86. Martin, J.H., Gordon, R.M. and Fitzwater, S.E., 1991. The case for iron. In: Chisholm, S.W. and Morel, F.M.M. (eds). What controls phytoplankton production in nutrient-rich areas of the open sea?. ASLO Symposium, Lake San Marcos, California, Feb. 22–24, Allen Press, Lawrence.Google Scholar
  87. Martin, J.H., Coale, K.H., Johnson, K.S., Fitzwater, S.E., 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371: 123–129.Google Scholar
  88. Mayer, L.M., Jorgensen, J. and Schnitker, D., 1991. Enhancement of diatom frustule dissolution by iron oxides. Marine Geology, 99: 263–266.Google Scholar
  89. McAllister, CD., Parsons, T.R. and Strickland, J.D.H., 1960. Primary producivity and fertility at station „P” in the north-east Pacific Ocean. Journal du Conseil, 25: 240–259.Google Scholar
  90. McMurtry, G.M., Chung-Ho, W. and Hsueh-Wen, Y., 1983. Chemical and isotopic investigation into the origin of clay minerals from the Galapagos hydrothermal mound field. Geochimica et Cosmochimica Acta, 47: 291–300.Google Scholar
  91. Mehra, O.P. and Jackson, M.L., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system bufferd with sodium carbonate. Proceedings of the national conference on clays and clay mineralogy, 7: 317–327.Google Scholar
  92. Michalopoulos, P. and Aller, R.C., 1995. Rapid clay mineral formation in Amazon delta sediments: Reverse weathering and oceanic elemental cycles. Science, 270: 614–617.Google Scholar
  93. Millero, F.J., Sotolongo, S. and Izaguirre, M., 1987. The oxidation kinetics of Fe(II) in seawater. Geochimica et Cosmochimica Acta, 51: 793–801.Google Scholar
  94. Morris, R.V., Lauer, H.V. Jr, Lawson, C.A., Gibson, E.K. Jr., Nace, G.A. and Stewart, C, 1985. Spectral and other physicochemical properties of submicron powders of hematite (a-Fe203), maghemite (g-Fe203), magnetite(Fe304), goethite (a -FeOOH), and lepidocrocite (g-FeOOH). Journal of Geophysical Research, 90: 3126–3144.Google Scholar
  95. Mortimer, R.J.G. and Coleman, M.L., 1997. Microbial influence on the oxygen isotopic composition of diagenetic siderite. Geochimica et Cosmochimica Acta, 61: 1705–1711.Google Scholar
  96. Munch, J.C. and Ottow, J.C.G., 1980. Preferential reductions of amorphous to crystalline iron oxides by bacterial activity. Journal of Soil Science, 129: 15–21.Google Scholar
  97. Munch, J.C. and Ottow, J.C.G., 1982. EinfluB von Zellkontakt und Eisen (III) oxidform auf die bakterielle Eisenreduktion (in German). Zeitschrift der Pflanzenernahrung und Bodenkunde, 145: 66–77.Google Scholar
  98. Murray, R.W. and Leinen, M., 1993. Chemical transport to the seafloor of the equatorial Pacific Ocean across a latitudinal transect at 135°W: Tracking sedimentary major, trace, and rare earth element fluxes at the Equator and the Intertropical Convergence Zone. Geochimica et Cosmochimica Acta, 57: 4141–4163.Google Scholar
  99. Myers, C.R. and Nealson, K.H., 1988a. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240: 1319–1321.Google Scholar
  100. Myers, C.R. and Nealson, K.H., 1988b. Microbial reduction of manganese oxides: Interactions with iron and sulfur. Geochimica et Cosmochimica Acta, 52: 2727–2732.Google Scholar
  101. Nittrouer, C.A., DeMaster, D.J., McKee, B.A., Cutshall, N.H. and Larsen, I.L., 1983/1984. The effect of sediment mixing on Pb-210 accumulation rates for the Washington continental shelf. Marine Geology, 54: 201–221.Google Scholar
  102. Norrish, K. and Taylor, R.M., 1961. The isomorphous replacement of iron by aluminium in soil goethites. Journal of Soil Sciences, 12: 294–306.Google Scholar
  103. Ottley, C.J., Davison, W. and Edmunds, W.M., 1997. Chemical catalysis of nitrate reduction by iron(II). Geochimica et Cosmochimica Acta, 61: 1819–1828.Google Scholar
  104. Ottow, J.C.G., 1969. Der EinfluB von Nitrat, Chlorat, Sulfat, Eisenoxidform und Wachstumsbedingungen auf das AusmaB der bakteriellen Eisenreduktion (in German). Zeitschrift der Pflanzenernahrung und Bodenkunde, 124: 238–253.Google Scholar
  105. Peiffer, G., Dos Santos Afonso, M., Werhli, B. and Gachter, R., 1992. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Environmental Science and Technology, 26: 2408–2412.Google Scholar
  106. Pena, F. and Torrent, J., 1984. Relationships between phosphate sorption and iron oxides in alfisols from a river terrace sequence of mediterranean Spain. Geoderma, 33:283–296.Google Scholar
  107. Postma, D., 1982. Pyrite and siderite formaton brackish and freshwater swamp sediments. American Journal of Science, 282: 1151–1183.Google Scholar
  108. Postma, D., 1985. Concentration of Mn and separation from Fe in sediments. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochimica et Cosmochimica Acta, 49: 1023–1033.Google Scholar
  109. Postma, D. and Jakobsen, R., 1996. Redox zonation: Equilibrium constraints on the Fe(III)/S04-reduction interface. Geochimica et Cosmochimica Acta, 60: 3169–3175.Google Scholar
  110. Prospero, J.M., 1981. Eolian transport to the world ocean. In: Emiliani, C. (ed), The sea. 7, Wiley, NY, pp. 801–874.Google Scholar
  111. Prospero, J.M., Glaccum, R.A. and Nees, R.T., 1981. Atmospheric transport of soil dust from Africa to South America. Nature, 289: 570–572.Google Scholar
  112. Pyzik, A.J. and Sommer, S.E., 1981. Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochimica et Cosmochimica Acta, 45: 687–698.Google Scholar
  113. Raiswell, R., Buckley, F., Berner, R.A. and Anderson, T.F., 1988. Degree of pyritisation as a paleoenvironmental indicator of bottom water oxygenation. Journal of Sedimentary Petrology, 58: 812–819.Google Scholar
  114. Raiswell, R., Canfield, D.E. and Berner, R.A., 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology, 111: 101–110.Google Scholar
  115. Raiswell, R. and Canfield, D.E., 1996. Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments. Geochimica et Cosmochimica Acta, 60: 2777–2787.Google Scholar
  116. Rickard, D., Schoonen, M.A.A. and Luther III., G.W., 1995. Chemistry of iron sulfides in sedimentary environments. In: Vairavamurthy, M.A. and Schoonen, M.A.A. (eds), Geochemical transformations of sedimentary sulfur. ACS Symposium Series, 612, Washington, DC,pp. 168–194.Google Scholar
  117. Roden, E.E. and Zachara, J.M., 1996. Microbial reduction of crystalline iron (III) oxides: Influence of oxides surface area and potential for cell growth. Environmental Science and Technology, 30: 1618–1628.Google Scholar
  118. Roth, C.B. and Tullock, R.J., 1972. Deprotonation of nontronite resulting from chemical reduction of strucktural ferric iron. Proceedings of the International Clay Conference, Madrid, 89–98.Google Scholar
  119. Rozenson, I. and Heller-Kallai, L., 1976a. Reduction and oxidation of Fe3+ in dioctahedral smectites — 1: Reduction with Hydrazine and Dithionite. Clays and Clay Minerals, 24: 271–282.Google Scholar
  120. Rozenson, I. and Heller-Kallai, L., 1976b. Reduction and oxidation of Fe3+ in dioctahedral smectites — 2: Reduction with sodium sulphide solutions. Clays and clay minerals, 24: 283–288.Google Scholar
  121. Rue, E.L. and Bruland, K.W., 1995. Comlexation of Fe(III) by natural organic ligands in the central North Pacific as determined by a new competitive ligand equilibration/ adsorptive cathodic stripping voltametric method. Marine Chemistry, 50: 117–138.Google Scholar
  122. Ruttenberg, K.C., 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37: 1460–1482.Google Scholar
  123. Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Losung (in German). Zeitschrift zur Pflanzenernahrung und Bodenkunde, 195: 194–202.Google Scholar
  124. Schwertmann, U., Fitzpatrick, R.W., Taylor, R.M. and Lewis, D.G., 1979. The influence of aluminium on iron oxides. Part II. Preperation and properties of Al substituted hematites. Clays and Clay Minerals, 11: 189–200.Google Scholar
  125. Schwertmann, U. and Murad, E., 1983. Effect of pH on the formation of goethite and haematite from ferrihydrite. Clays and Clay Minerals, 31: 277–284.Google Scholar
  126. Schwertmann, U. and Taylor, R.M., 1989. Iron oxides. In: Dinauer, R.C. (ed) Minerals in soil environment. Soil Science Society of America, Book Series, 1, Madison, WI, pp. 379–438.Google Scholar
  127. Schwertmann, U. and Cornell, R.M., 1991. Iron oxydes in the laboratory. VCH Verlagsgesellschaft mbH, Weinheim, 137 pp.Google Scholar
  128. Singer, A., Stoffers, P., Heller-Kallai, L. and Szafranek, D., 1984. Nontronite in a deep-sea ore from the south Pacific. Clays and Clay Minerals, 32: 375–383.Google Scholar
  129. Slomp, C.P., Van der Gaast, S.J. and Van Raaphorst, W., 1996a. Phosphorus binding by poorly cristalline iron oxides in North Sea sediments. Marine Geochemistry, 52: 55–73.Google Scholar
  130. Slomp, C.P., Epping, E.H.G., Helder, W. and Van Raaphorst, W., 1996b. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. Journal of Marine Research, 54: 1179–1205.Google Scholar
  131. Sorensen, J. and Thorling, L., 1991. Stimulation by lepidocrocite (g-FeOOH) of Fe(II)-dependent nitrite reduction. Geochimica et Cosmochimica Acta, 55: 1289–1294.Google Scholar
  132. Stookey, L.L., 1970. Ferrozine-A new spectrophotometric reagent for iron. Analytical Chemistry, 42: 779–781.Google Scholar
  133. Straub, K.L., Benz, M., Schink, B. and Widdel, F., 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62: 1458–1460.Google Scholar
  134. Stucki, J.W., 1981. The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-Phenanthroline: II. A photochemical Method. Soil Science Society of America Journal, 45: 638–641.Google Scholar
  135. Stumm, W. and Morgan, J.J., 1996. Aquatic Chemistry. Wiley & Sons, London, 1022 pp.Google Scholar
  136. Sulzberger, B., Suter, S., Siffert, C, Banwart, S. and Stumm, W., 1989. Dissolution of Fe(III) hydroxides in natural waters; Laboratory assessment on the kinetics controlled by surface coordination. Marine Chemistry, 28: 127–144.Google Scholar
  137. Sundby, B. and Silverberg, N., 1985. Manganese fluxes in the benthic boundary layer. Limnology and Oceanography, 30: 372–381.Google Scholar
  138. Sundby, B., Anderson, L.G., Hall, P.O.J., Iverfeldt, A., Rutgers van der, Loeff, M. and Westerlund S.F.G., 1986. The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochimica et Cosmochimica Acta, 50: 1281–1288.Google Scholar
  139. Sundby, B., Gobeil, C, Silcerberg, N. and Mucci, A., 1992. The phosphorus cycle in coastal marine sediments. Limnology and Oceanography, 37: 1129–1145.Google Scholar
  140. Thamdrup, B., Glud, R.N. and Hansen, J.W., 1994b. Manganese oxidation and in situ manganese fluxes from a coastal sediment. Geochimica et Cosmochimica Acta, 58: 2563–2570.Google Scholar
  141. Thamdrup, B. and Canfield, D.E., 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology and Oceanography, 41: 1629–1650.Google Scholar
  142. Torrent, J., Barron, V and Schwertman, U., 1992. Fast and slow phosphate sorption by goethite-rich natural materials. Clays and Clay Mineralogy, 40: 14–21.Google Scholar
  143. Trick, C.G., Andersen, R.J., Gillam, A. and Harrison, P.J., 1983. Prorocentrin: An extracellular siderophore produced by the marine dinoflagellate Prorocentrum minimum. Science, 219: 306–308.Google Scholar
  144. Trick, C.G., 1989. Hydroxomate-siderophore production and utilization by marine eubacteria. Current Microbiology, 18: 375–378.Google Scholar
  145. Uematsu, M., Duce, R.A., Prospero, J.M., Chen, L., Merrill, J.T. and McDonald, R.L., 1983. Transport of mineral aerosol from Asia over the North Pacific Ocean. Journal of Geophysical Research, 88: 5343–5352.Google Scholar
  146. Wallmann, K., Hennies, K., Konig, I., Petersen, W. and Knauth, H.-D., 1993. A new procedure for the determination of ‘reactive’ ferric iron and ferrous iron minerals in sediments. Limnologogy and Oceanography, 38: 1803–1812.Google Scholar
  147. Wang, Y. and Cappellen, P.v., 1996. A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta, 60: 2993–3014.Google Scholar
  148. Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59: 1217–1232.Google Scholar
  149. Wehrli, B., Friedl, G. and Manceau, A., 1995. Reaction rates and products of manganese oxidation at the sediment-water interface. In: Huang, C.P., O’Melia, C.R. and Morgan, J.J. (eds) Aquatic chemistry: Interfacial and interspecies processes. ACS Advances in Chemistry, 244, pp. 111–134.Google Scholar
  150. Widdel, F., Schnell, S., Heising, S., Ehrenrech, A., Assmus, B. and Schink, B., 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362: 834–836.Google Scholar
  151. Wu, J. and Luther, G.W., 1995. Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by competitve ligand equilibration method and kinetic approach. Marine Chemistry, 50: 159–177.Google Scholar
  152. Yeats, RA. and Bewers, J.M., 1982. Discharge of metals from the St. Lawrence River. Canadian Journal of Earth Science, 19: 982–992.Google Scholar
  153. Yeh, H.W. and Savin, S.M., 1977. Mechanism of burial meta-morphism of argillaceaous sediments: 3. O-isotope evidence. Bulletin of the Geological Society of America, 88: 1321–1330.Google Scholar
  154. Zabel, M. and Steinmetz, E., subm. Phosphorus forms in surficial sediments off Namibia-indicator for the benthic particle cycling. Marine Geology.Google Scholar
  155. Zhuang, G., Duce, R.A. and Kester, D.A., 1990. The dissolution of atmospheric iron in surface seawater of the open ocean. Journal of Geophysical Research, 59: 16207–16216.Google Scholar
  156. Zhuang, G. and Duce, R.A., 1993. The adsorption of dissolved iron on marine aerosol particles in surface waters of the open ocean. Deep-Sea Research, 40: 1413–1429.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ralf R. Haese

There are no affiliations available

Personalised recommendations