Organic Matter: The Driving Force for Early Diagenesis

  • Jürgen Rullkötter


The organic carbon cycle on Earth is divided into two parts (Fig. 4.1; Tissot and Welte 1984). The biological cycle starts with photosynthesis of organic matter from atmospheric carbon dioxide or carbon dioxide/bicarbonate in the surface waters of oceans or lakes. It continues through the different trophic levels of the biosphere and ends with the metabolic or chemical oxidation of decayed biomass to carbon dioxide. The half-life is usually days to tens of years depending on the age of the organisms. The geological organic carbon cycle has a carbon reservoir several orders of magnitude larger than that of the biological organic carbon cycle (6.4–1015t C compared with 3–1012t C in the biological cycle) and a turn-over time of millions of years. It begins with the incorporation of biogenic organic matter into sediments or soils.


Organic Matter Sedimentary Organic Matter Early Diagenesis Ganic Matter Hydrogen Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alperin, M.J., Reeburgh, W.S. and Devol, A.H., 1992. Organic carbon remineralization and preservation in sediments of Scan Bay, Alaska. In: Whelan, J.K. and Farrington, J.W. (eds), Organic matter: Producitivity, accumulation and preservation in recent and ancient sediments. Columbia University Press, NY, pp. 99–122.Google Scholar
  2. Bailey, G.W., 1991. Organic carbon flux and development of oxygen deficiency on the northern Benguela continental shelf south of 22°S: spatial and temporal variability. In: Tyson, R.V. and Pearson, T.H. (eds), Modern and ancient continental shelf anoxia, Geol. Soc. Spec. Publ, 58, Blackwell, Oxford, pp. 171–183.Google Scholar
  3. Benson, L.V., Burdett, J.W., Kashgarian, M, Lund, S.P., Phillips, F.M. and Rye, R.O., 1996. Climatic and hydrologic oszillations in the Owens Lake basin and adjacent Sierra Nevada, Califor nia. Science, 274: 746–749.Google Scholar
  4. Berger, W.H., Smetacek, V.S. and Wefer, G. (eds) 1989. Productivity of the ocean: Present and past. Dahlem Workshop Rep, Life Sci. Res. Rep., 44, Wiley, Chichester, 471 pp.Google Scholar
  5. Berger, W.H., 1989. Global maps of ocean productivity. In: Berger, W.H., Smetacek, VS., Wefer, G. (eds), Productivity of the ocean: Present and past; Dahlem Workshop Rep, Life Sci. Res. Rep., 44, Wiley, Chichester, pp. 429–456.Google Scholar
  6. Berner, R. and Raiswell, R., 1983. Burial of organic carbon and pyrit sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cosmochim. Acta, 47: 885–862.Google Scholar
  7. Betzer, PR., Showers, W.J., Laws, E.A., Winn, CD., Ditullo, G.R. and Kroopnick, P.M. 1984. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Research, 31: 1–11.Google Scholar
  8. Blokker, P., Schouten, S., Sinninghe Damste, J.S., van den Ende, H. and de Leeuw, J.W., 1998. Chemical structure of algaenans from fresh water algae Tetraedon minimum, Scenedesmus communis and Pediastrum boryanum. Org. Geochem., 29: 1453–1486.Google Scholar
  9. Bouloubassi, I., Rullkotter, J. and Meyers, PA., 1999. Origin and transformation of organic matter in Plioocene-Pleistocene Mediterranean sapropels: Organic geochemical evidence reviewed. Mar. Geol. 153: 177–199.Google Scholar
  10. Bralower, T.J. and Thierstein, H.R., 1987. Organic carbon and metal accumulation in Holocene and mid-Cretaceous marine sediments: paleoceanogaphic significance.In: Brooks, J. and Fleet, A.J. (eds), Marine petroleum source rocks. Geol. Soc. Spec. Publ., 26, Blackwell, Oxford, pp. 345–369.Google Scholar
  11. Brassel, S.C., Englinton, G., Marlowe, I.T., Pflaumann, U. and Sarnthein, M., 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature, 320: 129–133.Google Scholar
  12. Brassel, S.C., 1993. Application of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Princibles and applications. Plenum Press, NY, pp. 699–738.Google Scholar
  13. Briichert, V., 1998. Early diagnesis of sulfur in estuarine sediments: The role of sedimentary humic and fulvic acids. Geochim. Cosmochim. Acta, 62: 1567–1586.Google Scholar
  14. Calvert, S.E., 1987. Oceanic controls on the accumulation of organic matter in marine sediments. In: Brooks, J. and Fleet, A.J. (eds), Marine petroleum source rocks, Geol. Soc. Spec. Publ., 26, Blackwell, Oxford, pp. 137–151.Google Scholar
  15. Canuel, E.A. and Martens, C.S., 1996. Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment — water interface. Geochim. Cosmochim. Acta, 60: 1793–1806.Google Scholar
  16. Collins, M.J., Bishop, A.N. and Farrimond, P., 1995. Sorption by mineral surfaces: rebirth of the calssical condensation pathway for kerogen formation? Geochim. Cosmochim. Acta, 59: 2387–2391.Google Scholar
  17. Corbet, B., Albrecht, A. and Ourisson, G., 1980. Photochemical or photomimetic fossil triterpenoids in sediments and petroleum. J. Amer. Chem. Soc, 78: 183–188.Google Scholar
  18. Cornford, C, Rullkotter, J. and Welte, D., 1979. Organic geochemistry of DSDP Leg 47a, Site 397, eastern North Atlantic: Organic petrography and extractable hydrocarbons. In: von Rad, U., Ryan, W.B.F. et al. (eds), Init. Repts. DSDP, 47, US Government Printing Office, Washington, DC, pp. 511–522.Google Scholar
  19. Cowie, G.L. and Hedges, J.L., 1984. Determination of neutral sugars in plankton, sediments, and wood by capillary gas chromatography of equilibrated isomeric mixtures. Anal Chem, 56: 497–504.Google Scholar
  20. Cranwell, PA., 1973. Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environments. Freshw. Biol., 3: 259–265.Google Scholar
  21. de Leeuw, J.W., Cox, H.C., van Graas, G., van de Meer, F.W., Peakman, T.M., Baas, J.M.A. and van de Graaf, B., 1989. Limited double bond isomerisation and selective hydrogenation of sterenes during early diagenesis. Geochim. Cosmochim. Acta, 53: 903–909.Google Scholar
  22. de Leeuw, J.W. and Sinninghe Damste, J.S., 1990. Organic sulphur compounds and other biomarkers as indicators of palaeosalinity: A critical evaluation. In: Orr, W.L. and White, CM. (eds), Geochemistry of sulphur in fossil fuels, ACS symposium, 429, Washington, DC, pp. 417–443.Google Scholar
  23. de Leeuw, J.W. and Largeau, C, 1993. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Principles and applications. Plenum Press, NY, pp. 23–72.Google Scholar
  24. Demaison, G.J. and Moore, G.T., 1980. Anoxic environments and oil source bed genesis. Bull. Am. Assoc. Petrol. Geol., 64: 1179–1209.Google Scholar
  25. Demaison, G.J., 1991. Anoxiavs productivity: what controls the for mation of organic-carbon-rich sediments and sedimentary rocks? Bull. Am. Assoc. Petrol. Geol., 75: 499.Google Scholar
  26. Durand, B., 1980. Kerogen. Insoluble organic matter from the sedimentary rocks. Editions Technip., Paris, 519 pp.Google Scholar
  27. Eglington, G. and Hamilton, R.J., 1967. Leaf epicuticular waxes. Science, 156: 1322–1335.Google Scholar
  28. Emeis, K.-C, Robertson, A.H.F and Richter, C, et al. (eds) 1996. Proceedings of the Ocean Drilling Program. Initial Reports., 160, ODP, College Station (TX), 972 pp.Google Scholar
  29. Emerson, S. and Hedges, J.I., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography, 3: 621–634.Google Scholar
  30. Espitalie, J., Deroo, G. and Marquis, F, 1985. La pyrolyse Rock-Eval et ses applications. Rev. Inst. Fr. Pet., 40: 755 — 784.Google Scholar
  31. Fogel, M.L. and Cifuentes, L.A., 1993. Isotope fractionation during primary production. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Principles and applications. Plenum Press, NY, pp. 73–98.Google Scholar
  32. Freeman, K.H., Boreham, C.J., Summons, R.E. and Hayes, J.M., 1994. The effect of aromatization on the isotopic compositions of hydrocarbones during early diagnesis. Org. Geochem., 21: 1037–1049.Google Scholar
  33. Froelich, P.N., Klinkhammer, G.P, Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartmann, B. and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43: 1075–1090.Google Scholar
  34. Fry, B., Scalan, R.S. and Parker, PL., 1977. Stable carbon isotope evidence for two sources of organic matter in coastel sediments: sea grasses and plankton. Geochim. Cosmochim. Acta, 41: 1875–1877.Google Scholar
  35. Gagosian, R.B., Peltzer, E.T. and Merrill, J.T., 1987. Long-range transport of terrestrially derived lipids in aerosols from the South Pacific. Nature, 325: 800–803.Google Scholar
  36. Goni, M.A. and Hedges, J.I., 1992. Lignin dimers: structures, distribution and potential geochemical applications. Geochim. Cosmochim. Acta, 56: 4025–4043.Google Scholar
  37. Goth, K., de Leeuw, J.W., Piittmann, W and Tegelaar, E.W., 1988. The origin of Messel shale kerogen. Nature, 336: 759–761.Google Scholar
  38. Hayes, J.M., Freeman, K.H., Popp, B.N. and Hoham, C.H., 1990. Compound — specific isotope analyses, a novel tool for reconstruction of ancient biogeochemical processes. In: Duran, B. and Behar, F (eds), Advances in organic geochemistry 1989. Org. Geochem., 16, Pergamon Press, Oxford, pp. 1115–1128.Google Scholar
  39. Hayes, J.M., 1993. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Marine Geology, 113: 111–125.Google Scholar
  40. Heath, G.R., Moore, T.C. and Dauphin, J.P., 1977. Organic carbon in deep-sea sediments. In: Anderson, N.R. and Malahoff, A. (eds), The fate of fossil fuel C02 in the oceans. Plenum Press, NY, 605–625 pp.Google Scholar
  41. Hedges, J.I., Clark, W.A., Quay, P.D., Richey, J.E., Devol, A.H. and Santos, U.M., 1986a. Composition and fluxes of particulate organic material in the Amazonas River. Limnol. Oceanogr., 31: 717–738.Google Scholar
  42. Hedges, J.I., Cowie, G.L., Quay, P.D., Grootes, P.M., Richey, J.E., Devol, A.H., Farwell, G.W, Schmidt, F.W. and Salati, E. 1986b. Organic carbon-14 in the Amazon river system. Nature, 321: 1129–1131.Google Scholar
  43. Hedges, J.I. and Prahl, F.G., 1993. Early diagenesis: Consequence for applications of molecular biomarkers. Organic geochemistry. Principles and applications. Plenum Press, NY, 237–253pp.Google Scholar
  44. Hedges, J.I., Ertel, J.R., Richey, J.E., Quay, P.D., Benner, R., Strom, M. and Forsberg, B., 1994. Origin and processing of organic matter in the Amazo River as indicated by carbohydrates and amino acids. Limnol. Oceanogr., 39: 743–761.Google Scholar
  45. Hedges, J.I., Keil, R.G. and Benner, R., 1997. What happens to terrestrial organic matter in the ocen? Org. Geochem., 27: 195–212.Google Scholar
  46. Henrichs, S.M. and Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J., 5: 191–237.Google Scholar
  47. Herbin, J.P., Montadert, L.O., Miiller, C, Comez, R., Thurow, J. and Wiedmann, J., 1986. Organic-rich sedimentation at the Cenomanian/Turonian boundary in ocenaic and coastal basins in the North Atlantic and Teths. In: Summerhayes C.R and Shakleton N.J. (eds), North Atlantic paleoceanography, Geol. Soc. Spec. Publ., 21, Blackwell, Oxford, pp.389–422.Google Scholar
  48. Hinrichs, K.-U., Rinna, J. and Rullkotter, J., 1998. Late Ouantenary paleoenvironmental conditions indicated by marine and terrestrial molecular biomarkers in sediments from the Santa Barbara basin. In: Wilson, R.C. and Tharp, V.L. (eds), Proceedings of the fourteenth annual Pacific climate (PACLIM) conference, april 6–9, 1997. Interagency Ecological Program, Technical Report, 57, California Department of Water Resources, Marysville (CA), pp. 125–133.Google Scholar
  49. Hinz, K. and Winterer, E.L. et al. (eds), 1984. Initial Reports of the Deep Sea Drilling Project. 79, US Government Printing Office, Washington, DC, 934 pp.Google Scholar
  50. Hue, A.Y. and Durand, B., 1977. Occurrence and significance of humic acids in ancient sediments. Fuel, 56: 73–80.Google Scholar
  51. Hue, A.Y., 1988. Aspects of depositional processes of organic matter in sedimentary basins. In: Mattavelli, L. and Novelli, L. (eds), Advances in organic geochemistry 1987. Org. Geochem., 13, Pergamon Press, Oxford, pp. 263–272.Google Scholar
  52. Hulthe, G., Hulth, S. and Hall, P.O.J., 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim. Cosmochim. Acta, 62: 1319–1328.Google Scholar
  53. Hunt, J.M., 1996. Petroleum geochemistry and geology. Freeman, NY, 743 pp.Google Scholar
  54. Ibach, L.E., 1982. Relationships between sedimentation rate and total organic carbon content in ancient marine sediments. Bull. Am. Assoc. Petrol. Geol., 66: 170–188.Google Scholar
  55. Ittekkot, V., 1988. Global trends in the nature of organic matter in river suspensions. Nature, 332: 436–438.Google Scholar
  56. Jasper, J.P. and Gagosian, R.B., 1989. Alkenone molecular stratigraphy in an oceanic environment affected by glacial fresh-water events. Paleoceanography, 4: 603–614.Google Scholar
  57. Jasper, J.P. and Gagosian, R.B., 1990. The source and deposition of organic matter in the Late Quantenary Pygmy Basin, Gulf of California. Geochim. Cosmochim. Acta, 54: 117–132.Google Scholar
  58. Jasper, J.P., Hayes, J.M., Mix, A.C. and Prahl, F.G., 1994. Photo-synthetic fractionation of 13C and concentrations of dissolved C02 in the central equatorial Pacific during the last 255,000 years. Paleoceanography, 9: 781–798.Google Scholar
  59. Jorgensen, B.B., 1996. Case Study — Aarhus Bay. In: Jorgensen, B.B. and Richardson, K. (eds), Eutrophication in Coastal Marine Ecosystems. Coastal and Estuarine Studies, 52, American Geophysical Union, Washington, DC, pp. 137–154.Google Scholar
  60. Keil, R.G., Tsamakis, E., Fuh, C.B., Giddings, J.C. and Hedges, J.I., 1994a. Mineralogical and textural controls on the organic matter composition of coastal marine sediments: hydrodynamic seperation using SPLITT-fractionation. Geochim. Cosmochim. Acta, 58: 879–893.Google Scholar
  61. Keil, R.G., Montlucon, Prahl, F.G. and Hedges, J.I., 1994b. Sorptive preperation of labile organic matter in marine sediments. Nature, 370: 549–552.Google Scholar
  62. Koblents-Mishke, O.I., 1977. Primary production. In: Vinogradow, M.E. (ed) Oceanology and biology of the ocean 1 (in Russia). Nauka, Moscow, 62 pp.Google Scholar
  63. Kolattukudy, P.E., 1976. Chemistry and biochemistry of natural waxes. Elsevier, Amsterdam, 459 pp.Google Scholar
  64. Krey, J., 1970. Die Urproduktion des Meeres (in German). In: Dietrich, G. (ed), Erforschung des Meeres. Umschau, Frankfurt, pp. 183–195.Google Scholar
  65. Kristensen, E., Ahmed, S.A. and Devol, A.H., 1995. Aerobic and anaerobic decomposition of organic matter in marine sediments. Which is faster? Limnol. Oceanogr., 40: 1430–1437.Google Scholar
  66. Lallier-Verges, E., Bertrand, P. and Desprairies, 1993. Organic matter composition and sulfate reduction intensity in Oman Margin sediments. Marine Geology, 112: 57–69.Google Scholar
  67. Largeau, C, Derenne, S., Casadevall, E., Berkaloff, C, Corolleur, M., Lugardon, B., Raynaud, J.F. and Connan, J., 1990.Occurence and origin of “ultralaminar” structures in “amorphous” kerogens of various source rocks and oil shales. In: Durand, B. and Behar, F. (eds) Advances in organic geochemistry 1989. Org. Geochem., 16, Pergamon Press, Oxford, pp. 889–895.Google Scholar
  68. Largeau, C. and de Leeuw, J.W., 1995. Insoluble, nonhydrolyzable, aliphatic macromolecular constituents of microbial cell walls. In: Jones, J.G. (ed), Advances in Microbial Ecology, 14, Plenum Press, NY, pp. 77–177.Google Scholar
  69. Larter, S.R. and Horsfield, B., 1993. Determination of structural components of kerogens by the use of analytical pyrolysis methods. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Prinsiples and applications. Plenum Press, NY, pp. 271–287.Google Scholar
  70. Leventhal, J.S., 1983. An interpretation of carbon and sulphur relationships in Black Sea sediments as indicators of environments of depositions. Geochim. Cosmochim. Acta, 47: 133–138.Google Scholar
  71. Littke, R., Rullkotter, J. and Schaefer, R.G., 1991a. Organic and carbonate carbon accumulation on Broken Ridge and Ninetyeast Ridge, central Indian Ocean. In: Weissel, J., Pierce, J., et al (eds), Proceedings of the Ocean Drilling Program. Sci. Res., 121, ODP, College Station (TX), pp. 467–487.Google Scholar
  72. Littke, R., Baker, D.R., Leythaeuser, J. and Rullkotter, J., 1991b. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils syncline, northern Germany. In: Tyson, R.V. and Pearson, T.H. (eds), Modern and ancient continental shelf anoxia. Geol. Soc. Spec. Publ., 58, The Geological Society, London, pp. 311–343.Google Scholar
  73. Littke, R., Baker, D.R. and Rullkotter, J., 1997a. Deposition of petroleum source rocks. In: Welte, D.H., Horsfield, B. and Baker D.R. (eds), Petroleum and basin evolution. Springer Verlag, Heidelberg, pp. 271–333.Google Scholar
  74. Littke, R., Luckge, A. and Welte, D.H., 1997b. Quantification of organic matter degradation by microbial sulphate reduction for Quaternary sediments from the northern Arabian Sea. Naturwissenschaften, 84: 312–315.Google Scholar
  75. Luckge, A., Boussafir, M., Lallier-Verges, E. and Littke, R., 1996. Comparative study of organic matter preservation in immature sediments along the continental margins of Peru and Oman. Part I: Results of petrographical and bulk geochemical data. Org. Geochem., 24: 437–451.Google Scholar
  76. Martens, C.S. and Klump, J.V, 1984. Biogeochemical cycling in an organic-rich coastal marine basin-4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim. Cosmochim. Acta, 48: 1987–2004.Google Scholar
  77. Martens, C.S., Haddad, R.I. and Chanton, J.P., 1992. Organic matter accumulation, remineralization, and burial in an anoxic coastal sediment. In: Whelan, J.K. and Farrington, J.W. (eds), Organic matter: Productivity, accumulation and preservationin recent and ancient sediments. Columbia University Press, NY, pp. 82–98.Google Scholar
  78. Mayer, L.M., 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta, 58: 1271–1284.Google Scholar
  79. Mclver, R., 1975. Hydrocarbon occurrences from JOIDES Deep Sea Drilling Project. Proc. 9th Petrol. Congr. (Tokyo), Applied Science Publishers, Barking, 2: 269–280.Google Scholar
  80. McLafferty, F.W. and Turecek, R, 1993. Interpretation of mass spectra. University Science Books, Mill Valley (CA), 371 pp.Google Scholar
  81. Meybeck, M., 1982. Carbon, nitrogen, and phosphorous transport by world rivers. Am. J. Sci., 282: 401–450.Google Scholar
  82. Meyers, PA., 1994. Preservation of elemental and isotopic identification of sedimentary organic matter. Chem. Geol., 144: 289–302.Google Scholar
  83. Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologie, and paleoclimatic processes. Org. Geochem., 27: 213–250.Google Scholar
  84. Mitterer, R.M., 1993. The diagnesis of proteins and amino acids in fossil shells. In: Engel, M.H. and Macko, S.A. (eds), Organic geochemistry. Principles and applications. Plenum Press, NY, pp. 739–753.Google Scholar
  85. Moers, M.E.C., Jones, D.M., Eakin, PA., Fallick, A.E., Griffiths, H. and Larter, S.R. (eds), 1993. Carbohydrate diagenesis in hypersaline environments: application of GC-IRMS to the stable isotope analysis of derivatives of saccharides from surficial and buried sediments. Org. Geochem., 20: 927–933.Google Scholar
  86. Miiller, P.J., 1977. C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta, 41: 765–776.Google Scholar
  87. Miiller, P.J. and Suess, E., 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans — Organic carbon preservation. Deep-Sea Res., 26: 1347–1362.Google Scholar
  88. Miiller, P.J., Kirst, G., Ruhland, G., von Storch, I. and Rosell-Mele, A., 1998. Calibration of the alkenone paleotemperature index UK37 based on coretops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim. Cosmochim. Acta, 62: 1757–1772.Google Scholar
  89. Parkes, J.R., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, PC, Fry, J.C., Weightman, A.J. and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371:410–413.Google Scholar
  90. Petersen, T.F. and Calvert, S.E., 1990. Anoxia versus productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? Bull. Am. Assoc. Petrol. Geol., 74: 454–466.Google Scholar
  91. Pedersen, T.F. and Calvert, S.E., 1991. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? Reply. Bull. Am. Assoc. Petrol. Geol., 75: 500–501.Google Scholar
  92. Peters, K.E. and Moldowan, J.M., 1993. The biological marker guide. Interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall, Englewood Cliffs (NJ), 363 pp.Google Scholar
  93. Philp, R.P, 1985. Fossil fuel biomarkers — Applications and spectra. Methods in geochemistry and geophysics, 23, Elsevier, Amsterdam, 294 pp.Google Scholar
  94. Piatt, T. and Subba Rao, D.V., 1975. Primary production of marine microphytes. In: Cooper J.P. (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp. 249–279 pp.Google Scholar
  95. Plough, H., Kiihl, M., Buchholz-Cleven, B. and Jorgensen, B.B., 1997. Anoxic aggregates — an ephemeral phenomenon in the pelagic environment? Aqu. Microb. Ecol., 13: 285–294.Google Scholar
  96. Poynter, J., 1989. Molecular stratigraphy: The recongnition of paleoclimate signals in organic geochemical data. PhD Thesis, University of Bristol, 324 pp.Google Scholar
  97. Poynter, J. and Eglinton, G., 1991. The biomarker concept — strengths and weakness. Fresenius J. Anal. Chem., 339: 725–731.Google Scholar
  98. Prahl, F.G. and Wakeham, S.G., 1987. Calibration of unsaturation patterns in long-chain ketones compositions for paleotemperature assessment. Nature, 330: 367–369.Google Scholar
  99. Prahl, EG., Muelhausen, L.A. and Zahnle, D.L., 1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta, 52: 2303–2310.Google Scholar
  100. Prahl, F.G., 1992. Prospective use of molecular paleontology to test for iron limitation on marine primary productivity. Mar. Chem., 39: 167–185.Google Scholar
  101. Prahl, F.G., Ertel, J.R., Goni, M.A., Sparrow, M.A. and Eversmeyer, B., 1994. Terrestrial organic carbonm contributions to sediments on the Washington margin. Geochim. Cosmochim. Acta, 58: 3035–3048.Google Scholar
  102. Radke, M., Willsch, H. and Welte, D.H., 1980. Preperative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal Chem, 52: 406–411.Google Scholar
  103. Ransom, B., Kim, D., Kastner, M. and Wainwright, S., 1998. Organic matter preservation on continental slopes: Importance of mineralogy and surface area. Geochim. Cosmochim. Acta, 62: 1329–1345.Google Scholar
  104. Rashid, M.A., 1985. Geochemistry of marine humic compounds. Springer Verlag, Berlin, Heidelberg, NY, 300pp.Google Scholar
  105. Rau, G.H., Takahashi, T., Des Marais, D.J. and Sullivan, C.W, 1991. Particulate organic matter dl3C variations across the Drake Passage. J. Geophys. Res., 96: 15131–15135.Google Scholar
  106. Redfield, A.C., Ketchum, B.H. and Richards, F.A., 1963. The influence of organisms on the composition of sea-water. In: Hill, M.N. (ed), The sea, 2, Wiley Interscience, NY, pp. 26–77.Google Scholar
  107. Rohmer, M., Bisseret, P. and Neunlist, S., 1992. The hopanoids, prokaryiotic triterpenoids and precoursors of ubiquitous molecular fossil. In: Moldowan, J.M., Albrecht, P. and Philip, R.P. (eds), Biological markers in sediments and petroleum. Prentice Hall, Englewood Cliffs (NJ), pp. 1–17Google Scholar
  108. Romankevich, E.A., 1984. Geochemistry of organic matter in the ocean. Springer, Heidelberg, 334 pp.Google Scholar
  109. Rullkotter, J., Cornford, C. and Welte, D.H., 1982. Geochemistry and petrogaphy of organic matter in Northwest African continentalmagin sediments: quantity, provenance, depositional environment and temperature history. In: von Rad, U., Hinz, K., Sarntheim, M. and Seibold, E. (eds), Geology of the Northwest African continental margin. Springer Verlag, Heidelberg, pp. 686–703.Google Scholar
  110. Rullkotter, J., Vuchev, V, Hinz, K., Winterer, E.L., Baumgartner, P.O., Bradshaw, M.L., Channel, J.E.T., Jaffrezo, M., Jansa, L.F., Leckie, R.M., Moore, J.M., Schaftenaar, C, Steiger, T.H. and Wiegand, G.E., 1983. Potential deep sea petroleum beds related to coastal upwelling. In: Thiede, J. and Suess, E. (eds), Coastal upwelling: Its sediment record, Part B: Sedimentary records of ancient coastal upwelling. Plenum Press, NY, pp. 467–483.Google Scholar
  111. Rullkotter, J., Mukhopadhyay, P.K., Schaefer, R.G. and Welte, D.H., 1984. Geochemistry and petrography of organic matter in sediments from the Deep Sea Drilling Project Sites 545 and 547, Mazagan Escarpment. In: Hinz, K., Winterer, E.L., et al. (eds), Initial Reports DSDP, 79, US Government Printing Office, Washington, DC, pp. 775–806.Google Scholar
  112. Rullkotter, J., Mukhopadhyay, P.K. and Welte, D.H., 1987. Geochemistry and petrography of organic matter from the Deep Sea Drilling Project Site 603, lower continental rise off Cape Hateras. In: van Hite, J.E., Wise, S.E., et al. (eds), Initial reports DSDP, 92, US Government Printing Office, Washington, DC, pp. 1163–1176.Google Scholar
  113. Rullkotter, J. and Michaelis, W, 1990. The structure of kerogenand related materials. A review of recent progress and future trends. In: Durand, B. and Behar, F (eds), Advances in organic geochemistry 1989. Org. Geochem., 16, Pergamon Press, Oxford, pp. 829–852.Google Scholar
  114. Rullkotter, J., 1992. Geochemistry, organic. In: Meyers, R.A. (ed), The encyclopedia of physical science and technology. 7, Academic Press, Orlando, pp. 165–192.Google Scholar
  115. Sarnthein, M., Winn, K. and Zahn, R., 1987. Paleoproductivity of oceanic and the effect of atmospheric C02 and climatic change during deglaciation times. In: Berger, W.H. and Labeyrie, L.D. (eds), Abrupt climatic change. Reidel, Dordrecht, pp. 311–337.Google Scholar
  116. Sarnthein, M., Winn, K., Duplessy, J.C. and Fontugne, M.R., 1988. Global variations of surface water productivity in low- and mid- latitudes: influence of C02 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography, 3: 361–399.Google Scholar
  117. Sawada, K., Handa, N., Shiraiwa, Y., Danbara, A. and Montani, S., 1996. Long-chain alkenones and alkyl alkenoates in the coastel and pelagic sediments of the northwest North Pacific, with special reference to the reconstruction of the Emiliania huxleyi and Gephyrocapsa oceanica ratios. Org. Geochem., 24: 751–764.Google Scholar
  118. Schidlowski, M., 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333: 313–318.Google Scholar
  119. Schlesinger, W.H. and Melack, J.M., 1981. Transport of organic carbon in the world’s rivers. Tellus, 33: 172–187 pp.Google Scholar
  120. Senesi, N. and Miano, T.M., 1994. Humic substances in the global environment and implications on human health. Elsevier, Amsterdam.Google Scholar
  121. Simoneit, B.R.T., 1986. Cyclic terpenoids of the geosphere. In: Johns, R.B. (ed), Biological markers in the sedimentary record. Elsevier, Amsterdam, pp. 43–99.Google Scholar
  122. Sinninghe Damste, J.S., Eglinton, T.I., de Leeuw, J.W and Schenck, P.A., 1989a. Organic sulphur in macromolecular sedimentary organic matter I. Structure and origin sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash py- rolysis. Geochim. Cosmochim. Acta, 53: 873–899.Google Scholar
  123. Sinninghe Damste, J.S., Rijpstra, W.I.C., Kock-van Dalen, A.C., de Leeuw, J.W. and Schenck, PA., 1989b. Quenching of labile functionalized lipids by inorganic sulphur species: Evidence for the formation of sedimetary organic sulphur compounds at the early stages of diagenesis. Geochim. Cosmochim. Acta, 53: 1343–1355.Google Scholar
  124. Sinninghe Damste, J.S., Eglinton, T.I., Rijpstra, W.I.C. and de Leeuw, J.W., 1990. Characterization of organically bound sulphur in high — molecular — weight sedimentary organic matter using flash pyrolysis and Raney Ni desulphurisation. In: Orr, W.L. and White, CM. (eds), Geochemistry of sulphur in fossil fuels, ACS symposium, 429, American Chemical Society, Washington, DC, pp.486–528.Google Scholar
  125. Sinninghe Damste, J.S. and Koster, J., 1998. A euxinic North Atlantic ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet. Sci. Lett., 158: 165–173.Google Scholar
  126. Stach, E., Mackowsky, M., Teichmuller, M., Taylor, G.H., Chandra, D. and Teichmuller, R., 1982. Stach’s textbook of coal petrology. Gebriider Borntrager, Stuttgart, 428 pp.Google Scholar
  127. Stein, R., 1986a. Surface-water paleo-productivity as interrred from sediment deposits on oxic and anoxic deep-water environments of the Mesozoic Atlantic Ocean. Mitt. Geol.-Palaont. Inst. Univ. Hamburg, 60: 55–70Google Scholar
  128. Stein, R., 1986b. Organic carbon and sedimentation rate — further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic Ocean. Marine Geology, 72: 199–209.Google Scholar
  129. Stein, R., ten Haven, H.L., Littke, R., Rullkotter, J. and Welte, D.H., 1989. Accumulation of marine and terrigenous organic carbon at upwelling Site 658 and nonupwelling Sites 657 and 659: implications for the reconstruction of paleoenvironments in the eastern subtropical Atlantic through Late Cenozoic times. In: Rudiman, W., Sarnheim, M., et al. (eds), Proceedings of the Ocean Drilling Program, Sci. Res., 108, ODP, College Station (TX), pp. 361–385.Google Scholar
  130. Stein, R., 1990. Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments. Geo-Mar. Lett., 10: 37–44.Google Scholar
  131. Stein, R., 1991. Accumulation of organic carbon in marine sediments. Lect. Notes Earth Science, 34: 1–217.Google Scholar
  132. Stein, R. and Rack, F, 1995. A 160,000-year high-resolution record of quantity and composition of organic carbon in the Santa Barbara basin (Site 893). In: Kennett, J.P., Baldauf, J. and Lyle, M. (eds), Proceedings of the Ocean Drilling Program, Sci. Res., 146, ODP, College Station (TX), pp. 125–138.Google Scholar
  133. Suess, E. and Thiede, J., 1983. Coastal upwelling: its sediment record. Part A: Responses of the sedimentary regime to present coastal upwelling. Plenum Press, NY, 604 pp.Google Scholar
  134. Summerhayes, C.P., 1981. Organic facies of middle Cretaceous black shales in deep North Atlantic. Bull. Am. Assoc. Petrol. Geol., 65: 2364–2380.Google Scholar
  135. Summerhayes, C.P., Prell, P.I. and Emeis, K.C. (eds), 1992. Upwelling systems: Evolution since the early Miocene. Geol. Soc. Spec. Publ., 64, Blackwell, Oxford, 519 pp.Google Scholar
  136. Takahashi, T., Broeker, WS. and Langer, S., 1985. Redfield ratio based on chemical data from isopycnal surface. J. Geophys. Res., 90: 6907–6924.Google Scholar
  137. Tegelaar, E.W., de Leeuw, J.W., Derenne, S. and Largeau, C, 1989. A reappraisal of kerogen formation. Geochim. Cosmochim. Acta, 53: 3103–3107.Google Scholar
  138. ten Haven, H.L., Peakman, T.M. and Rullkotter, J., 1992. Early diagnetic transformation of higher plant triterpenoids in deep sea sediments from Baffin Bay. Geochim. Cosmochim. Acta, 56: 2001–2024.Google Scholar
  139. Thiede, J. and Suess, E. (eds), 1983. Coastal upwelling, its sediment record. Part B: Sedimentary records of ancient coastal upwelling. Plenum Press, NY, 610 pp.Google Scholar
  140. Tissot, B.P and Welte, D.H., 1984. Petroleum formation and occurrence. Springer Verlag, Heidelberg, 699 pp.Google Scholar
  141. Tyson, R.V., 1987. The genesis and palynofacies characteristics of marine petroleum source rocks. In: Brooks, J. and Fleet, A.J. (eds), Marine petroleum source rocks. Geol. Soc. Spec. Publ., 58, Blackwell, Oxford, pp. 47–67.Google Scholar
  142. Tyson, R.V. and Pearson, T.H. (eds), 1991. Modern and ancient continental shelf anoxia. Geol. Soc. Spec. Publ., 58, Blackwell, Oxford, 470 pp.Google Scholar
  143. van Krevelen, D.W., 1961. Coal typology-chemistry-physics-constitution. Elsevier, Amsterdam, 513 pp.Google Scholar
  144. Veto, I., Hetenyi, M., Demeny, A. and Hertelendi, E., 1994. Hydrogen index as reflecting intensity of sulphide diagenesis in non-bioturbated, shaly sediments. Org. Geochem., 22: 299–310.Google Scholar
  145. Volkman, J.K. and Maxwell, J.R., 1986. Acyclic isoprenoides as biological markers. In: Johns, R.B. (ed), Biological markers in the sedimentary record. Elsevier, Amsterdam, pp 1–42.Google Scholar
  146. Volkman, J.K., Barret, S.M., Blackburn, S.I. and Sikes, E.L., 1995. Alkenones in Gephyrocapca oceanica: Implications for studies of paleoclimate. Geochim. Cosmochim. Acta, 59: 513–520.Google Scholar
  147. Volkman, J.K., Barret, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E. and Gelin, E, 1998. Microalgal biomarkers: A review of recent research developments. Org. Geochem., 29: 1163–1179.Google Scholar
  148. von Engelhardt, W., 1973. Sedimentpetrologie, Teil III: Die Bildung von Sedimenten und Sedimentgesteinen (in German). Schweizerbarth, Stuttgart, 378 pp.Google Scholar
  149. von Rad, U. and Ryan, W.B.F., et al. (eds), 1979. Initial Reports of the Deep Sea Drilling Program, 47, US Government Printing Office, Washington, DC, 835pp.Google Scholar
  150. Wakeham, S.G. and Lee, C, 1989. Organic geochemistry of particulate matter in the ocean: The role of particles in oceanic sedimentary cycles. Org. Geochem., 14: 83–96.Google Scholar
  151. Welte, D.H., Horsfield, B. and Baker, D.R. (eds), 1997. Petroleum and basin evolution. Springer Verlag, Heidelberg, 535 pp.Google Scholar
  152. Westerhausen, L., Poynter, J., Eglinton, G., Erlenkeuser, H. and Sarnthein, M., 1993. Marine and terrigenous origin of organic matter in modern sediments of the equatorial East Atlantic: the dl3C and molecular record. Deep-Sea Res., 40: 1087–1121.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jürgen Rullkötter

There are no affiliations available

Personalised recommendations