Skip to main content

Conceptual Models and Computer Models

  • Chapter
Marine Geochemistry
  • 1136 Accesses

Abstract

Upon recording processes of nature quantita-tively, the term model is closely related to the term system. A system is a segment derived from nature with either real or, at least, imagined boundaries. Within these boundaries, there are processes which are to be analyzed. Outside, there is the environment exerting an influence on the course of the procedural events which are in¬ternal to the system by means of the boundary conditions. A conceptual model contains prin¬ciple statements, mostly translatable quantita-tively, with regard to the processes in a system and the influence of prevalent boundary condi¬tions. If the systems to be reproduced are espe¬cially complex, any significant realization of the conceptual model is often only possible by apply¬ing computer models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball, J.W. and Nordstrom, D.K., 1991. WATEQ4F — User’s manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elments in nature waters. U.S. Geologie Surv., Open — File Report 90–129, 185 pp.

    Google Scholar 

  • Berner, R.A., 1980. Early diagenesis: A theoretical approach. Princton Univ. Press, Princton, NY, 241 pp.

    Google Scholar 

  • Boudreau, B.P., 1997. Diagenetic models and their impletation: modelling transport and reactions in aquatic sediments. Springer Verlag, Berlin, Heidelberg, NY, 414 pp.

    Book  Google Scholar 

  • Canfield, D.E., Thamdrup, B. and Hansen, J.W., 1993a. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57: 3867–3883.

    Article  Google Scholar 

  • Canfield, D.E., Jorgensen, B.B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N.B., Thamdrup, B., Hansen, J.W., Nielsen, L.P. and Hall, P.O.J., 1993b. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 113: 27–40.

    Article  Google Scholar 

  • Fliihler, H. and Jury, W.A., 1983. Estimating solute transport using nonlinear, rate dependent, two — site — adsorption models. Microfiche, Eidg. Anstalt forstlicher Versuchswesen, 245, Zurich, 48 pp.

    Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luetke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D. and Hartman, B., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1090.

    Article  Google Scholar 

  • Garrels, R.M., 1960. Mineral Equilibria at Low Temperature and Pressure. Harper, NY, 254 pp.

    Google Scholar 

  • Garrels, R.M. and Christ, C.L., 1965. Solutions, Minerals and Equilibria. Harper & Row, NY, Evanston, London. Weatherhill, Tokyo, 450 pp.

    Google Scholar 

  • Glasby, G.P. and Schulz, H.D., 1999. EH, pH diagrams for Mn, Fe, Co, Ni, Cu and As under seawater conditions: Application of two new types of EH, pH diagrams to the study of specific problems in marine geochemistry. Aquatic Geochemistry, 5: 227–248.

    Article  Google Scholar 

  • Glud, R.N., Gundersen, J.K., Jorgensen, B.B., Revsbech, N.P. and Schulz, H.D., 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Research, 41: 1767–1788.

    Article  Google Scholar 

  • Hamer, K. and Sieger, R., 1994. Anwendung des Modells CoTAM zur Simulation von Stofftransport und geochemischen Reaktionen. Verlag Ernst & Sohn, Berlin, 186 pp.

    Google Scholar 

  • Hensen, C, Landenberger, H., Zabel, M., Gundersen, J.K., Glud, R.N. and Schulz, H.D., 1997. Simulation of early diagenetic processes in continental slope sediments in Southwest Africa: The computer model CoTAM tested. Marine Geology, 144: 191–210.

    Article  Google Scholar 

  • Kharaka, Y.K., Gunter, W.D., Aggarwal, P.K., Perkins, E.H. and DeBraal, J.D., 1988. SOLMINEQ88: a computer program for geochemical Modeling of water — rock — interactions. US Geological Survey, Water — Recources Investigations Report, 88–4227, 207 pp.

    Google Scholar 

  • Kinzelbach, W., 1986. Groundwater Modeling — An Introduction with Sample Programs in BASIC. Elsevier, Amsterdam, Oxford, NY, Tokyo: 333 pp.

    Google Scholar 

  • Landenberger, H., Hensen, C, Zabel, M. and Schulz, H.D., 1997. Softwareentwicklung zur computergestutzten Simulation fruhdiagnetischer Prozesse in marinen Sedimenten. Zeitschrift der deutschen geologischen Gesellschaft, 148: 447–455.

    Google Scholar 

  • Landenberger, H., 1998. CoTReM. ein Multi — Komponenten Transport- und Reaktions — Modell., Berichte, Fachbereich Geowissenschaften, Universitat, Bremen, No 110, 142 pp.

    Google Scholar 

  • Niewohner, C, Hensen, C, Kasten, S., Zabel, M. and Schulz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62(3): 455–464.

    Article  Google Scholar 

  • Nordstrom, D.K., Plummer, L.N., Wigley, T.M.L., Woley, T.J., Ball, J.W., Jenne, E.A., Basset, R.L., Crerar, D.A., Florence, T.M., Fritz, B., Hoffman, M., Holdren, G.R.(jr.), Lafon, G.M., Mattigod, S.V., McDuff, R.E., Morel, F., Reddy, M.M., Sposito, G. and Thraikill, J., 1979. A comparision of computerized chemical models for equilibrium calculations in aqueous systems: in Chemical Modeling in aqueous systems, speciation, sorption, solubility, and kinetics. Chemical Modeling in aqueous systems speciation, sorption, solubility, and kinetics. In: Jenne, E.A. (ed) Series, American Chemical Society, 93: 857–892.

    Google Scholar 

  • Parkhurst, D.L., Thorstensen, D.C. and Plummer, L.N., 1980. PHREEQE — a computer program for geochemical calculations. US Geological Survey, Water — Recources Investigations Report., 80–96, 219 pp.

    Google Scholar 

  • Parkhurst, D.L., 1995. User’s guide to PHREEQC: a computer model for speciation, reaction — path, advective — transport, and inverse geochemical calculation. US Geological Survey, Water — Resources Investigations Report, 95–4227, 143 pp.

    Google Scholar 

  • Plummer, L.N., Jones, B.F. and Truesdell, A.H., 1976. WATEQF — a fortran 4 version of WATEQ, a computer program fpr calculating chemical equilibrium of natural waters. US Geological Survey, Water — Recources Investigations Report, 76–13, 614 pp.

    Google Scholar 

  • Schulz, H.D. and Reardon, E.J., 1983. A combined mixing cell/analytical model to discribe two — dimensional reactiv solute transport for unidirectional groundwater flow. Water Recources Research, 19: 493–502.

    Article  Google Scholar 

  • Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K. and Zabel, M., 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochimica et Cosmochimica Acta, 58(9): 2041–2060.

    Article  Google Scholar 

  • Truesdell, A.H. and Jones, B.F., 1974. WATEQ — a computer program for calculating chemical equilibria on natural waters. Jour. Research US Geological Survey, Washington DC, 2: 233–248.

    Google Scholar 

  • Van Cappellen, P. and Yifeng Wang, Y., 1995. STEADYSED1: A Steady — State Reaction — Transport Model for C, N, S, O, Fe and Mn in Surface Sediments. Version 1.0 User’s Manual, Georgia Inst. Technol. 40 pp.

    Google Scholar 

  • Van Cappellen, P. and Wang, Y., 1996. Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. American Journal of Science, 296: 197–243.

    Article  Google Scholar 

  • Van Cappellen, P. and Gaillard, J.-E, 1996. Biogeochemical Dynamics in Aquatic Sediments. In: Lichtner, P.C., Steefel, C.I. and Oelkers, E.H. (eds) Reactive Transport in Porous Media. Reviews in Mineralogy, The Mineralogical Society of America, Washington, DC, 34: 335–376.

    Google Scholar 

  • Wang, Y. and Cappellen, P.v., 1996. A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta, 60(16): 2993–3014.

    Article  Google Scholar 

  • Wolery, T.J., 1993. EQ 3/6, A Software Package for Geochemical Modeling of Aqueous Systems. Lawrence Livermore National Laboratory, California, 247 pp.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulz, H.D. (2000). Conceptual Models and Computer Models. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04242-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04244-1

  • Online ISBN: 978-3-662-04242-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics