Skip to main content

Influence of Geochemical Processes on Stable Isotope Distribution in Marine Sediments

  • Chapter
Marine Geochemistry

Abstract

Stable isotope geochemistry has become an essential part of marine geochemistry and has contributed considerably to the understanding of the ocean’s changing environment and the processes therein. In some fields, such as paleoceanography, the application of stable isotopes is still growing due to new microanalytical techniques, permitting a relatively precise analysis of very small samples or single compounds, which allows the investigation of a new generation of problems. Stable isotopes have become useful tracers for reconstructing past temperatures, salinities, productivity, pCO2, nutrients, etc. However, it has become evident that some limitations exist on the application of these tracers. Diagenetic processes may considerably alter the primary signals, due to preferential preservation, decomposition or relocation of particular tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altabet, M. and McCathy, J., 1985. Temporal and spatial variation in the natural abdundance of l5N in PON from a warm core ring. Deep-Sea Research, 32: 755–722.

    Google Scholar 

  • Altabet, M., 1988. Variations in nitrogen isotopic composition between sinking and suspended particles: implication for nitrogen cycling and particle transformation in the open ocean. Deep-Sea Research, 35: 535–554.

    Google Scholar 

  • Altabet, M.A. and Curry, W.B., 1989. Testing models of past ocean chemistry using foraminifera 15N/14N. Global Biogeochemical Cycles, 3: 107–119.

    Google Scholar 

  • Altabet, M.A., Deuser, W.G., Honjo, S. and Stienen, C, 1991. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature, 354: 136–139.

    Google Scholar 

  • Altabet, M. and Francois, R., 1994. Sedimentary nitrogen isotopic ratio as recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles, 8: 103–116.

    Google Scholar 

  • Altenbach, A.V. and Sarnthein, M., 1989. Producitivity record in benthic foranimifera. In Berger W.H., Smetacek V.S., Wefer, G. (eds), Producitivity of the ocean: Present and Past. John Wiley & Sons, pp. 255–269.

    Google Scholar 

  • Andersen, N., Muller, P.J., Kirst, G. and Schneider, R.R., in press. Late Quantenary pCO2 variations in the Angola Current interred from alkenone d13C and carbon demand estimated by d15N. In: Fischer, G. and Wefer, G. (eds), Use of proxies in paleoceanography: examples from the South Atlantic. Springer Verlag, Berlin, Heidelberg, NY.

    Google Scholar 

  • Arthur, M.A. F. A.T., Kaplan, I.R., Veizer, J. and Land, L.S., 1983. Stable isotops in sedimentary geology. SEPM Short Course, 10, SEPM, Tulsa, OK, 432 pp.

    Google Scholar 

  • Barret, T.J. and Friedrichsen, H., 1989. Stable isotopic composition of atypical ophiolitic rocks from east Liguria, Italy. Chemical Geology, 80: 71–84.

    Google Scholar 

  • Bemis, B.E., Spero, H.J., Bijma, J. and Lea, D.W., 1998. Reevaluation of the oxygen isotopic composition of planktonic ferominifera: Experimantal results and revised paleotemperature equations. Paleoceanogaphy, 13: 150–160.

    Google Scholar 

  • Berger, W.H. and Vincent, E., 1986. Deep-sea carbonates: Reading the carbon-isotope signal. Geologische Rundschau, 75: 249–269.

    Google Scholar 

  • Berger, W.H., Smetacek, V.S. and Wefer, G., (eds) 1989. Productivity of the ocean: Present and Past. Wiley & Sons, NY, 471 pp.

    Google Scholar 

  • Berner, R.A. and Raiswell, R., 1983. Burial of organic carbon and pyrit sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47: 885–892.

    Google Scholar 

  • Bickert, T. and Wefer, G., 1996. Late Quaternary deep water circulation in the South Atlantic: Reconstruction from carbonate dissolution and benethic stable isotopes. In: Wefer, G., Berger, W.H., Siedler, G. and Webb, D. (eds), The South Atlantic: present and past circulation. Springer, Berlin, pp. 599–620.

    Google Scholar 

  • Bickert, T., Patzold, J., Samtleben, C. and Munnecke, A., 1997. Paleoanvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta, 61: 2717–2739.

    Google Scholar 

  • Bidigare, R.R., Fluegge, A, Freeman, K.H., Hanson, K.L., Hayes, J.M., Hollander, D., Jasper, J., King, L.L., Laws, E.A., Milder, J., Millero, F.J., Pancost, R., Popp, B.N., Steinberg, P.A. and Wakeham, S.G., 1997. Consistance fractionation of 13C in nature and in the laboratory: Growth rate effects in some haptophyte algae. Global Biogeochemical Cycles, 11: 279–292.

    Google Scholar 

  • Birchfield, G.E., 1987. Changes in deep-ocean water d180 and temperature from last glacial maximum to present. Paleoceanography, 2: 431–442.

    Google Scholar 

  • Brand, W., 1996. High precision isotope ratio monitoring techniques in mass spectrometry. Journal of Mass Spectrometry, 31: 225–235.

    Google Scholar 

  • Broecker, W.S., 1982. Ocean chemistry during glacial time. Geochimica et Cosmochimica Acta, 46: 1689–1705.

    Google Scholar 

  • Broecker, W.S. and Maier-Reimer, E., 1992. The influence of air and sea exchange on the carbon isotope disribution in the sea. Global Biogeochemical Cycles, 6: 315–320.

    Google Scholar 

  • Carpenter, S.J., Lohmann, KC, Holden, P, Walter, LM, Huston, TJ, Halliday, AN, 1991. d180 values, 87Sr/86Sr and Sr/Mg rations of Late Devonian abiotic arine calcite: Implications for the composition of ancient seawater. Geochimica et Cosmochimica Acta, 55: 1991–2010.

    Google Scholar 

  • Charles, CD. and Fairbanks, R.G., 1990. Glacial to interglacial changes in the isotopic gradients of the Southern Ocean surface water. In Bleil, U. and Thiede, J. (eds), Geological history of the Polar Oceans: Artie vesus Antarctic. Kluwer, Dordrecht, pp. 519–538.

    Google Scholar 

  • Cifuentes, L.A., Sharp, J.H. and Fogel, M.L., 1988. Stable natron and nitrogen isotope biogeochemistry in the Delaware estuary. Limnology and Oceanography, 33: 1102–1115.

    Google Scholar 

  • Clark, I.D. and Fritz, P., 1997. Environmental isotopes in hydrogeology. Press/Lewis Puplishers, Boca Raton, 328 pp.

    Google Scholar 

  • Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H. and Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28: 190–260.

    Google Scholar 

  • Cline, J.D. and Kaplan, I.R., 1975. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Marine Chemistry, 3: 271–299.

    Google Scholar 

  • Coplen, T.B., 1996. More uncertainty than necessary. Paleoceanography, 11: 369–370.

    Google Scholar 

  • Craig, H. and Gordon, L.I., 1965. Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: Tongiori, E. (ed), Stable isotopes in oceanic studies and paleotemperatures. Consiglio Nazionale Delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, pp. 9–130.

    Google Scholar 

  • De Lange, G.J., van Os, B., Pruysers, P.A., Middelburg, J.J., Castradori, D., van Santvoort, P., Muller, P.J., Eggenkamp, H. and Prahl, F.G., 1994. Possible early diagenetic alteration of paleo proxies. In: Zahn, R., Pederson, T.F., Kaminski, M.A. and Labeyrie, L. (eds), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global climate. NATO ASI Series, Springer Verlag, Berlin, pp. 225–258.

    Google Scholar 

  • Degens, E.T., Guillard, R.R.L., Sackett, W.M. and Hellebust, J.A., 1968. Metabolic fractionation of carbon isotopes in marine plankton. I. temperature and respiration experiments. Deep-Sea Research, 15: 1–9.

    Google Scholar 

  • Degens, E.T., 1969. Biogeochemistry of stable carbon isotopes. In: Eglington, G. and Murphy, M.T.J, (eds); Organic geochemistry. Methods and results. Springer Verlag, Berlin, pp. 304–329.

    Google Scholar 

  • Deines, P., 1981. The isotopic composition of reduced organic carbon. In: Fritz, P. and Fontes, J.C., (eds), Handbook of environmental geochemistry, 1. Elsevier, NY, pp. 239–406.

    Google Scholar 

  • Derry, L.A. and France-Lanord, C, 1996. Neogene growth of the sedimentary organic carbon. Paleoceanography, 11: 267–276.

    Google Scholar 

  • Emrich, K., Ehhalt, D.H. and Vogel, J.C., 1970. Carbon isotope fractionation during the precipitation of Calcium carbonate. Earth and Planetary Science Letters, 8: 363–371.

    Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H.A. and Urey, H.C., 1953. Revised carbonate-water isotopic temperature scale. Bull. Geol. Soc. Am., 64: 1315–1325.

    Google Scholar 

  • Erez, J. and Luz, B., 1983. Experimantal paleotemperature equation for planktonic foraminifera. Geochimicet et Cosmochimica Acta, 47: 1025–1031.

    Google Scholar 

  • Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342: 637–642.

    Google Scholar 

  • Fairbanks, R.G., Charles, CD. and Wright, J.D., 1992. Origin of global meltwater pulses. In: Tayler, R.E. (ed), Radiocarbon after four decades. Springer, NY, pp. 473–500.

    Google Scholar 

  • Faure, G., 1986. Principles of isotope geology. Wiley & Sons, NY, 589 pp.

    Google Scholar 

  • Fontugne, M.R. and Calvert, S.E., 1992. Late Pleistocene variability of the carbon isotopic composition of organic and atmospheric matter in the eastern Mediterranean: Monitor of changes in carbon sources and atmospheric C02 concentrations. Paleoceanography, 7: 1–20.

    Google Scholar 

  • Francois, R., Altabet, M.A. and Burckle, L.H., 1992. Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sediment dl5N. Paleoceanography, 7: 589–606.

    Google Scholar 

  • Fry, B., Jannasch, H.W., Molyneaux, S.J., Wirsen, CO., Muramato, J.A. and King, S., 1991. Stable isotopes of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench. Deep-Sea Research, 38: 1003–1019.

    Google Scholar 

  • Gruber, N. and Sarmiento, J.L., 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles, 11: 235–266.

    Google Scholar 

  • Habicht, K.S. and Canfield, D.E., 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 61: 5351–5361.

    Google Scholar 

  • Hartmann, M. and Nielson, H., 1969. 34S Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der weslichen Ostsee. Geologische Rundschau, 58: 621–655.

    Google Scholar 

  • Hayes, J.M., 1993. Factors controlling l3C contents of sedimentary organic compounds: Principles and evidence. Marine Geology, 113:111–125.

    Google Scholar 

  • Hoefs, J., 1997. Stable Isotop Geochemistry. Springer, Berlin, Heidelberg, NY, 201 pp.

    Google Scholar 

  • Hoffmann, S.E., Wilson, M. and Stakes, D.S., 1986. Inferred oxygen isotope profile of Archean crust, Onverwacht Group, South Africa. Nature, 321: 55–58.

    Google Scholar 

  • Holland, H.D., 1978. The chemistry of the atmosphere and oceans. Wiley, NY, 351 pp.

    Google Scholar 

  • Holmes, M.E., Muller, P.J., Schneider, R.R., Segl, M. and Wefer, G., 1997. Reconsruction of past nutrient utilization in the eastern Angola Basin based on sedimentary 15N/14N rations. Paleoceanography, 12: 604–614.

    Google Scholar 

  • Holser, W.T., 1997. Geochemical events documented in inorganic carbon isotopes. Paleogeography, Paleoclimatology, Paleoecology, 132: 173–182.

    Google Scholar 

  • Irwin, H., Curtis, C and Coleman, M., 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269: 209–213.

    Google Scholar 

  • Jacobs, S.S., Fairbanks, R.G. and Horibe, Y, 1985. Origin and evolution of water masses near the antarctic continental margin: Evidence from H2 180/H2 160 ratios in seawater. Antarctic Research Series, 43: 59–85.

    Google Scholar 

  • Jasper, J.P. and Hayes, J.M., 1990. A carbon isotope record of C02 levels during the late Quantenary. Nature, 347: 462–464.

    Google Scholar 

  • Jasper, J.P. and Hayes, J.M., 1994. Reconstraction of Paleoceanic pC02 levels from carbon isotopic compositions of sedimentary biogenic components. In: Zahn, R., Pederson, T.F., Kaminski, M.A. and Labeyrie, L. (eds), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global climate. NATO ASI Series, Springer Verlag, Berlin, pp. 323–342.

    Google Scholar 

  • Jorgensen, B.B., Erez, J., Revsbech, N.R and Cohen, Y., 1985. Symbiontic photosynthesis in a planktonic foraminifera, Globigerinoides sacculifer (Brady), studied with microelectrodes. Limnol. Oceanogr., 30: 1253–1267.

    Google Scholar 

  • Jorgensen, B.B., 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science, 249: 152–154.

    Google Scholar 

  • Kaplan, I.R. and Rittenberg, S.C., 1964. Microbiological fractionation of sulfur isotopes. J. Gen. Microbiol., 34: 195–212.

    Google Scholar 

  • Kroopnick, P., 1985. The distribution of l3C of SC02 in the world oceans. Deep-Sea Research, 32: 57–84.

    Google Scholar 

  • Kyser, T.K., 1995. Micro-analytical techniques in stable isotope geochemistry. Can. Mineral, 33: 261–278.

    Google Scholar 

  • Lawrence, J.R., 1989. The stable isotope Geochemistry of deep-sea pore water. In: Fritz, P., and Fontes, J.C., (eds), Handbook of environmental isotope geochemistry, 3, Elsevier, Amsterdam, pp. 317–354.

    Google Scholar 

  • Laws, E.A., Popp, B.N., Bidigare, R.R., Kennicutt, M.C. and Macko, S.A., 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and (C02)aq: Theoretical considerations and experimental results. Geochimica et Cosmochimica Acta, 59: 1131–1138.

    Google Scholar 

  • Liu, K.K. and Kaplan, I.R., 1989. The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater of southern California. Limnol. Oceanography, 34: 820–830.

    Google Scholar 

  • Longinelli, A., 1989. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In: Fritz, P., Fontes, J.C. (eds), Handbook of environmental isotope geochemistry, 3. Elsevier, Amsterdam, pp. 219–255.

    Google Scholar 

  • Lynch-Stieglitz, J., Stocker, T.F., Broecker, W.S. and Fairbanks, R.G., 1995. The influence of air-sea exchange on the isotopic composition of oceanic carbon: observations and modeling. Global Biogeochemical Cycles, 9: 653–665.

    Google Scholar 

  • Lyons, T.W. and Berner, R.A., 1992. Carbon-sulfur-iron sys-tematics of the uppermost deep-water sediments of the Black-Sea. Chemical Geology, 99: 1–27.

    Google Scholar 

  • Mackensen, A., Hubberten, H.W., Bickert, T., Fischer, G. and FĂĽtterer, D.K., 1993. d13C in benethic foraminiferal tests of Fontbotia wuellerstorfi (SCHWAGER) relative to d13C of dissolved inorganic carbon in Southern Ocean deep water: implications for glacial ocean circulation models. Paleoceanography, 8: 587–610.

    Google Scholar 

  • Mackensen, A., Hubberten, H.W., Scheele, N. and Schlitzer, R., 1996. Decoupling of d13CSC02 and phosphate in recent Weddell Sea Deep and Bottom Water: Implcations for glacial Southern Ocean paleoceanography. Paleoceanography, 11: 587–610.

    Google Scholar 

  • Matsumoto, R., 1992. Causes of the oxygen isotopic depletion of interstitial waters from sites 798 and 799, Japan Sea, Leg. 128, Proc. ODP, Sci. Res., 127/128: 697–703.

    Google Scholar 

  • McConnaughey, T.A., Burdett, J., Whelan, J.F. and Paull, C.K., 1997. Carbon isotopes in biological carbonates: Respiration and photosynthesis. Geochimica et Cosmochimica Acta, 61: 611–622.

    Google Scholar 

  • McCorkle, D.C., Emerson, S.R. and Quay, P.D., 1985. Stable carbon isotopes in marine porewaters. Earth Planetary Science Letters, 74: 13–26.

    Google Scholar 

  • McCorkle, D.C. and Emerson, S.R., 1988. The relationship between pore water carbon isotopic composition and bottom water oxygen concentration. Geochimica et Cosmochimica Acta, 52: 1196–1178.

    Google Scholar 

  • McCorkle, D.C, Keigwin, L.D., Corliss, B.H. and Emerson, S.R., 1990. The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography, 5: 161–185.

    Google Scholar 

  • McCorkle, D.C, Martin, PA., Lea, D.W. and Klinkhammer, G.P., 1995. Evidence of a dissolution effect on benethic foraminiferal shell chemistry: di3C, Cd/Ca, Ba/Ca, and Sr/Ca results from the Ontong Java Plateau. Paleoceanography, 10: 699–714.

    Google Scholar 

  • McCorkle, D.C, Corliss, B.H. and Farnham, CA., 1997. Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins. Deep-Sea Research, 44: 983–1024.

    Google Scholar 

  • Miyake, Y. and Wada, E., 1971. The isotope effect on the nitrogen in biochemical oxidation-reduction reactions. Rec. Oceanogr. Works Japan, 11: 1–6.

    Google Scholar 

  • Montoya, J.P., 1994. Nitrogen fractionation in the modern ocean: Implications for the sedimmentary record. In Zahn, R., Pedersen, T.F., Kaminski, M.A. and Labeyrie, L. (eds), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change. NATO ASI Series, Springer, Berlin, pp. 259–279

    Google Scholar 

  • Mook, W.G., Bommerson, J.C. and Staverman, W.H., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 22: 169–176.

    Google Scholar 

  • Muehlenbach, K., 1986. Alteration of the oceanic crust and the 180 history of seawater. Mineral Soc. Amer. Rev. in Mineral, 16: 425–444.

    Google Scholar 

  • Miiller, P.J., Schneider, R. and Ruhland, G., 1994. Late Quaternary pC02 variations in the Angola Current: Evidence from organic carbon d13C and alkenone temperatures. In: Zahn, R., Pedersen, T.F., Kaminski, M.A. and Lebeyrie, L. (eds), Carbon cycling in the glacial ocean: constraints on the ocean’s role in global change. NATO ASI Series, Springer Verlag, Berlin, Heidelberg, pp. 343–361.

    Google Scholar 

  • Newman, J.W., Parker, PL. and Behrens, E.W., 1973. Organic carbon isotope ratios in Quaternary cores from the Gulf of Mexico. Geochimica et Cosmochimica Acta, 37: 225–238.

    Google Scholar 

  • Nielsen, H. and Ricke, W., 1964. Schwefel-Isotopen-Verhaltnisse von Evaporiten aus Deutschland: ein Beitrag zur Kenntniss von 34S im Meerwasser-Sulfat. Geochimica et Cosmochimica Acta, 28: 577–591.

    Google Scholar 

  • Nissenbaum, A., Presley, B.J. and Kaplan, I.R., 1972. Early diagnesis in a reducing fjord, Saanich Inlet, British Columbia — I. Chemical and isotopic changes in major components of interstitial water. Geochimica et Cosmochimica Acta, 36: 1007–1027.

    Google Scholar 

  • O’Leary, M.H., 1981. Carbon isotope fractionation in plants. Phytochemistry, 20: 553–567.

    Google Scholar 

  • Ohmoto, H., Kaiser, CJ. and Geer, K.A., 1990. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted basement deposits. University Western Australia Publ., 23: 70–120.

    Google Scholar 

  • Park, R. and Epstein, S., 1960. Carbon isotope fractionationduring photosynthesis. Geochimica et Cosmochimica Acta, 21: 110–126.

    Google Scholar 

  • Popp, B.N., Anderson, T.F. and Sandberg, P.A., 1986. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society America Bulletin, 97: 1262–1269.

    Google Scholar 

  • Popp, B.N., Tagiku, R., Hayes, J.M., Louda, J.W. and Baker, E.W., 1989. The post-paleozoic chronology and mechanism of d,3C depletion in primary marine organic matter. American Journal of Science, 289: 436–454.

    Google Scholar 

  • Popp, B.N., Parekh, P., Tilbrook, B., Bidigare, R.R. and Laws, E.A., 1997. Organic carbon dl3C variations in sedimentary rocks as chemostratigraphic and paleoenvironmental tools. Paleogeography, Paleoclimatology, Paleoecology, 132: 119–132.

    Google Scholar 

  • Popp, B.N., Laws, EA, Bidigare, RR, Dore, JE, Hanson, KL and Wakeham, SG, 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta, 62: 69–77.

    Google Scholar 

  • Raab, M. and Spiro, B., 1991. Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chemical Geology, 86: 323–333.

    Google Scholar 

  • Railsback, L.B., 1990. Influenze of changing deep ocean circulation on the Phanerozoic oxygen isotopic record. Geochimica et Cosmochimica Acta, 54: 1501–1509.

    Google Scholar 

  • Raiswell, R. and Berner, R.A., 1985. Pyrit formation in euxinic and semi-euxenic sediments. American Journal of Science, 285: 710–724.

    Google Scholar 

  • Raiswell, R. and Berner, R.A., 1986. Pyrit and organic matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta, 50: 1967–1976.

    Google Scholar 

  • Raiswell, R., 1997. A geochimical framework for the application of stable sulphur isotopes to fossil pyritization. Journal of the Geological Society, 154: 343–345.

    Google Scholar 

  • Rau, G.H., Froehlich, P.N., Takahashi, T. and Des Marais, D.J., 1991. Does sedimentary organic d13C record variations in Quaternary ocean [CO2(a)]? Paleoceanography, 6: 335–347.

    Google Scholar 

  • Rau, G.H., Riebesell, U. and Wolf-Gladrow, D., 1997. CO2 — dependet photosynthetic 13C franctionation in the ocean: A model versus measurements. Global Biogeochemical Cycles, 11: 267–278.

    Google Scholar 

  • Raymo, M.E., Grant, B., Horowitz, M. and Rau, G.H., 1996. Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Marine Micropaleontology, 27: 313–326.

    Google Scholar 

  • Rink, S., Ktthl, M., Bijma, J. and Spero, H.J., 1998. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifera O. universa. Marine Geology, 131: 583–596.

    Google Scholar 

  • Ruhlemann, C., Frank, M., Hale, W., Mangini, A., Mulitza, S., Miiller, PJ. and Wefer, G., 1996. Late Quaternary productivity changes in the western equatorial Atlantic: Evidence from 230Th-normalized carbonate and organic carbon accumulation rates. Marine Geology, 135: 127–152.

    Google Scholar 

  • Sarnthein, M., Winn, K., Jung, SJA., Duplessy, JC, Labeyrie, L., Erlenkeuser, H. and Ganssen, G., 1994. Changes in east Atlantic deepwater circulation over the last 30,000 years: Eigth time slice reconstuctions. Paleoceanography, 9: 209–268.

    Google Scholar 

  • Schneider, R., Dahmke, A., Rolling, A., Miiller, PJ., Schulz, HD. and Wefer, G., 1992. Strong deglacial minimum in the d13C record from planktonic foraminifera in the Benguala upwelling region: palaeoceanographic signal or early diagenetic imprint. In: Summerhayes, CR, Prell, WL. and Emeis, KC (eds), Upwelling systems: Evolution since the early Miocene. Geological Society Special Publication, 63, pp. 285–297.

    Google Scholar 

  • Shackleton, N.J. and Opdyke, N.D., 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V 28–238: Oxygen isotope temperatures and ice volumes on a 10A5 year scale. Quantenary Research, 3: 39–55.

    Google Scholar 

  • Shackleton, N.J., 1977. Tropical rainforest history and the equatorial Pacific carbonate dissolotion cycles. In: Anderson, NR. and Malahoff, A. (eds), Fate in fossil foel C02 in the oceans. Plenum, NY, pp. 401–427.

    Google Scholar 

  • Spero, H.J., 1992. Do planktonic foraminifera accurately record shifts in th ecarbon isotopic composition of CO2? Marine Micropaleontology, 19: 275–285.

    Google Scholar 

  • Spero, H.J. and Lea, D.W., 1993. Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer: Results from laboratory experiments. Marine Micropaleontology, 22: 221–234.

    Google Scholar 

  • Spero, H.J., Bijma, J., Lea, D.W. and Bemis, B.E., 1997. Effect of seawater carbonate chemistry on planktonic foraminiferal carbon and oxygen isotope values. Nature, 390: 497–500.

    Google Scholar 

  • Strauss, H., 1997. The isotopic composition of sedimentary sulfur through time. Paleogeography, Paleoclimatology, Paleoecology, 132: 97–118.

    Google Scholar 

  • Sweeney, R.E., Liu, K.K. and Kaplan, I.R., 1978. Oceanic nitrogen isotopes and their uses in determinig the source of sedimentary nitrogen. In: Robinson, B.W. (ed), Stable isotopes in earth sciences. Dept. Scientific and Industrial Research, Wellington, pp. 9–26.

    Google Scholar 

  • Sweeney, R.E. and Kaplan, I.R., 1980. Natural abundances of l5N as a source indicator for near-shore marine sedimentary and dissolved nitrogen. Marine Chemistry, 9: 81–94.

    Google Scholar 

  • Veizer, J., Brukschen, P., Pawellek, F., Diener, A., Podlaha, O.G., Carden, G.A.F., Jasper, T., Korte, C, Strauss, H., Azmy, K. and Ala, D., 1997. Oxygen isotope evolution of Phanerozoic seawater Palaeogeography, Palaeoclimatology, Palaeoecology, 132: 159–172.

    Google Scholar 

  • Vinogradov, A.P., Grinenko, V.A. and Ustinov, V.I., 1962. Isotopic composition of sulfur compounds in the Black Sea. Geokhimiya, 10: 973–997.

    Google Scholar 

  • Voss, M., Altabet, M.A. and von Bodungen, B., 1996. dl5N in sedimenting particles as indicator of euphotic — zone processes. Deep-Sea Research, 43: 33–47.

    Google Scholar 

  • Wada, E. and Hattori, A., 1978. Nitrogen assimilation affects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiology J, 1: 85–101.

    Google Scholar 

  • Wada, E., Minagawa, M., Mizutani, H., Tsuji, T., Imaizumi, R. and Karaswa, K., 1987. Biogeochemical studies on the transport of organic matter along the Otsuchi River watershed, Japan. Estuarine, Coastal and Shelf Sciences, 25: 321–336.

    Google Scholar 

  • Walker, J.G.C. and Lohmann, K.C., 1989. Why the oxygen isotopic composition of seawater changes through time. Geophysical Research Letters, 16: 323–326.

    Google Scholar 

  • Wefer, G. and Berger, W.H., 1991. Isotope paleontology: growth and composition of extnant calacareous species. Marine Geology, 100: 207–248.

    Google Scholar 

  • Wefer, G., Heinze, P.M. and Berger, W.H., 1994. Clues to ancient methane release. Nature, 369: 282.

    Google Scholar 

  • Weiss, R.F., 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry, 2: 203–215.

    Google Scholar 

  • Weiss, R.F., Ostlund, H.G. and Craig, H., 1979. Geochemical studies of the Wedell Sea. Deep-Sea Research, 26: 1093–1120.

    Google Scholar 

  • Williams, L.B., Ferell, R.E., Hutcheon, I., Bakel, A.J., Walsh, M.M. and Krouse, H.R., 1995. Nitrogen isotope geochemistry of organic matter and minerals during diagneses and hydrocarbon migration. Geochimica et Cosmochimica Acta, 59: 765–779.

    Google Scholar 

  • Wu, G. and Berger, W.H., 1989. Planktonic foraminifera: differential dissolution and the Quanternary stable isotope record in the west Equatorial Pacific. Paleoceanography, 4: 181–198.

    Google Scholar 

  • Zahn, R. and Mix, A.C., 1991. Benethic foraminifera dlsO in the ocean’s temperature — salinty — density field: Constraints on ice age thermohaline circualtion. Paleoceanography, 6: 1–20.

    Google Scholar 

  • Zahn, R. and Keir, R., 1994. Tracer-nutrient correlations in the upper ocean: observatorial and box model constraints on the use of benethic foraminiferal dl3C and Cd/Ca as paleo-proxies for the intermadiate-depth ocean. In: Zahn, R., Pedersen, T.F., Kaminski, M.A. and Labeyrie, L. (eds), Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change. NATO ASI Series, I 17, Springer, Berlin, pp. 195–223.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bickert, T. (2000). Influence of Geochemical Processes on Stable Isotope Distribution in Marine Sediments. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04242-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04244-1

  • Online ISBN: 978-3-662-04242-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics