Skip to main content

Abstract

This chapter describes SH-type SAWs that are now widely used. Various properties for the waves are discussed in the comparison with conventional Rayleigh-type SAWs. Detailed information is given about COM analysis modified for the SH-type SAWs, and simulations of the state-of-the-art SAW devices are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Bleustein: A New Surface Wave in Piezoelectric Materials, Appl. Phys. Lett., 13 (1968) pp. 412.

    Google Scholar 

  2. Y.V. Gulyaev: Electroacoustic Surface Waves in Solids, Soviet Phys. JETP Lett., 9 (1969) pp. 63.

    Google Scholar 

  3. Y. Ohta, K Nakamura and H. Shimizu: Surface Concentration of Shear Wave on Piezoelectric Materials with Conductor, Technical Report of IEICE, Japan US69-3 (1969) in Japanese.

    Google Scholar 

  4. M. Kadota, K. Morozumi, T. Ikeda and T. Kasanami: Ceramic Resonators Using BGS Waves, Jpn. J. Appl. Phys., 31, Suppl. 31–1 (1992) pp. 219–221.

    Google Scholar 

  5. K Nakamura, M. Kazumi and H. Shimizu: SH-type and Rayleigh-Type Surface Waves on Rotated Y-cut LiTaO3, Proc. IEEE Ultrason. Symp. (1977) pp. 819822.

    Google Scholar 

  6. M. Lewis: Surface Skimming Bulk Waves, Ssbw, Proc. IEEE Ultrason. Symp. (1977) pp. 744–752.

    Google Scholar 

  7. K. Yamanouchi and K. Shibayama: Propagation and Amplification of Rayleigh Waves and Piezoelectric Leaky Surface Waves in LiNbo3, J. Appl. Phys., 43 (1972) pp. 856–862.

    Article  Google Scholar 

  8. K. Hashimoto, M. Yamaguchi and H. Kogo: Experimental Verification of SSBW and Leaky SAW Propagating on Rotated Y-cuts of LiNbo3 and LiTaO3, Proc. IEEE Ultrason. Symp. (1983) pp. 345–349.

    Google Scholar 

  9. K. Hashimoto and M. Yamaguchi: Effects of Surface Electrical Boundary Condition on Excitation and Propagation of Highly Piezoelectric Leaky Surface Acoustic Waves, Proc. 7th European Time and Frequency Forum (1993) pp. 517–522.

    Google Scholar 

  10. V.P. Plessky and T. Thorvaldsson: Rayleigh Waves and Leaky SAW in Periodic Systems of Electrodes: Periodic Green’s Function Analysis, Proc. IEEE Ultrason. Symp. (1992) pp. 461–464.

    Google Scholar 

  11. K. Hashimoto, M. Yamaguchi and H. Kogo: Interaction of High-Coupling Leaky SAW with Bulk Waves under Metallic-Grating Structure on 36°YX-LiTao3, Proc. IEEE Ultrason. Symp. (1985) pp. 16–21.

    Google Scholar 

  12. Kawachi, G. Endoh, M. Ueda, O. Ikata, K. Hashimoto and M. Yamaguchi: Optimum Cut of LiTaO3 for High Performance Leaky Surface Acoustic Wave Filters, Proc. IEEE Ultrason. Symp. (1986) pp. 71–76.

    Google Scholar 

  13. K. Hashimoto, M. Yamaguchi, S. Mineyoshi, O. Kawachi, M. Ueda, G. Endoh, and O. Ikata: Optimum Leaky-SAW Cut of LiTaO3 for Minimised Insertion Loss Devices, Proc. Ultrason. Symp. (1997) pp. 245–254.

    Google Scholar 

  14. P.D. Bloch, N.G. Due, E.G.S. Paige and M. Yamaguchi: Observations on Surface Skimming Bulk Waves and Other Waves Launched from an IDT on Lithium Niobate, Proc. IEEE Ultrason. Symp. (1981) pp. 268–273.

    Google Scholar 

  15. V. Plessky and C.S. Hartmann: Characteristics of Leaky SAWs on 36°-LiTaO3 in Periodic Structures of Heavy Electrodes’, Proc. IEEE Ultrason. Symp. (1993) pp. 1239–1246.

    Google Scholar 

  16. K. Hashimoto, G. Endoh and M. Yamaguchi: Coupling-of-Modes Modelling for Fast and Precise Simulation of Leaky Surface Acoustic Wave Devices, Proc. IEEE Ultrason. Symp. (1995) pp. 251–256.

    Google Scholar 

  17. E. Bigler, E. Gavignet, B.A. Auld, E. Ritz and E. Sang: Surface Transverse Wave (STW) Quartz Resonators in the GHz Range, Proc. 6th European Time and Frequency Forum (1992) pp. 219–222.

    Google Scholar 

  18. B.P. Abbott and K. Hashimoto: A Coupling-of Modes Formalism for Surface Transverse Wave Devices, Proc. IEEE Ultrason. Symp. (1995) pp. 239–245.

    Google Scholar 

  19. V. Plessky: Two Parameter Coupling-of-Modes Model for Shear Horizontal Type SAW Propagation in Periodic Gratings, Proc. IEEE Ultrason. Symp. (1993) pp. 195–200.

    Google Scholar 

  20. K. Hashimoto and M. Yamaguchi: General-Purpose Simulator for Leaky Surface Acoustic Wave Devices Based on Coupling-of-Modes Theory, Proc. IEEE Ultrason. Symp. (1996) pp. 117–122.

    Google Scholar 

  21. S. Mineyoshi, O. kawachi, M. Ueda and Y. Fujiwara: Analysis and Optimal SAW Ladder Filter Design Including Bonding Wire and Package Impedance, Proc. IEEE Ultrason. Symp. (1997) pp. 175–178.

    Google Scholar 

  22. C.S. Hartmann, V.P. Plessky: Experimental Measurements of Propagation, Attenuation, Reflection and Scattering of Leaky Waves in Al Electrode Gratings on 41°, 54° and 64°-LiNbo3, Proc. IEEE Ultrason. Symp. (1993) pp. 1247–1250.

    Google Scholar 

  23. G. Kovacs, M. Anhorn, H.E. Engan, G. Visintini, and C.C.W. Ruppel: Improved Material Constants for LiNbO3 and LiTao3, Proc. IEEE Ultrason. Symp. (1990) pp. 435–438.

    Google Scholar 

  24. Y. Sakamoto, K. Hashimoto and M. Yamaguchi: Behaviour of LSAW Propagation at Discontinuous Region of Periodic Grating, Jpn. J. Appl. Phys., 37, 5B (1998) pp. 2905–2908.

    Google Scholar 

  25. M. Yamaguchi, K. Hashimoto and H. Kogo: Effects of Surface Metallisation on SSBW and BGW Propagation in Quartz, Electron. Lett., 17, 17 (1981) pp. 602–603.

    Article  Google Scholar 

  26. B.A. Auld, J.J. Gagnepain and M. Tan: Horizontal Shear Surface Waves on Corrugated Surface, Electron. Lett., 12 (1976) pp. 650–651.

    Article  Google Scholar 

  27. Y.V. Gulyaev and V.P. Plessky: Slow Surface Acoustic Waves in Solids, Soy. Tech. Phys. Lett. 3 (1977) pp. 220–223.

    Google Scholar 

  28. I.D. Avramov, O. Ikata, T. Matsuda, T. Nishihara and Y. Satoh: Further Improvements of Surface Transverse Wave Resonator Performance in the 2.0 to 2.5 GHz Range, Proc. IEEE Freq. Contr. Symp. (1997) pp. 807–815.

    Google Scholar 

  29. I.D. Avramov: Microwave Oscillators Stabilized with Surface Transverse Wave Resonant Devices, Proc. IEEE Freq. Contr. Symp. (1992) pp. 391–408.

    Google Scholar 

  30. T. Sato and H. Abe: Longitudinal Leaky Surface Waves for High Frequency SAW Device Application, Proc. IEEE Ultrason. Symp. (1995) pp. 305–315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hashimoto, Ky. (2000). Simulation of SH-type SAW Devices. In: Surface Acoustic Wave Devices in Telecommunications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04223-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04223-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08659-5

  • Online ISBN: 978-3-662-04223-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics