Skip to main content

Photooxidation of Dissolved Organic Matter: Role for Carbon Bioavailability and for the Penetration Depth of Solar UV-Radiation

  • Chapter
Chemical Processes in Marine Environments

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Most of the solar radiation that reaches land or water is converted into thermal energy, but a significant part, especially that in the ultraviolet and visible region, is diverted into photochemical and photobiological processes that affect the global carbon cycle. The most prominent photobiological process on the earth’s surface is biological photosynthesis. Terrestrial vegetation and marine algae use the solar energy to convert annually approximately 100 Gt (gigatons) of carbon in the form of atmospheric carbon dioxide (CO2) into organic matter (Zepp 1994). When plants and algae die, the resulting non-living matter is transformed by various biological and chemical processes that either convert it back to CO2 (and other trace carbon gases) and water or to biologically refractory organic substances. The refractory organic matter is a mixture of substances, including litter and more refractory compounds, a large portion of which consists of humic substances (Thurman 1985). The term “humic substances” is usually used to refer to the organic matter that has been isolated from natural waters or from soils using well-defined techniques (Frimmel and Christman 1988; Huber and Frimmel 1994). Humic substances make up the largest single class of dissolved organic matter (DOM), accounting for 30 to 60% of the DOM in most natural waters (Thurman 1985). [The term “dissolved organic matter, DOM” is here used as synonym of “dissolved organic carbon, DOC.”] The term “colored dissolved organic matter (CDOM)” is used for the fraction of DOM that is colored (Blough and Green 1995) and includes humic substances. Based on Orinoco River data, Blough et al. (1993) estimated that only about 65% of the total DOM absorbs solar radiation and is subject to direct photochemical reactions (see Table 3.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae MO, Ferek RI (1992) Photochemical production of carbonyl sulfide in seawater and its emission to the atmosphere. Global Biogeochem Cycles 6: 175–183

    Article  Google Scholar 

  • Averett RC, Leenheer JA, McKnight DM, Thorn KA (199o) Humic substances in the Suwannee River, Georgia: Interactions, properties, and proposed structures. U.S. Geological Survey Open File Report No. 87–557, Denver, Colorado

    Google Scholar 

  • Blough NV (1997) Photochemistry in the sea-surface microlayer. In: Liss PS, Duce R (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 383–424

    Chapter  Google Scholar 

  • Blough NV, Green SA (1995) Spectroscopic characterization and remote sensing of nonliving organic matter. In: Zepp RG, Sonntag C (eds) Role of nonliving organic matter in the earth’s carbon cycle. Wiley-Interscience, New York

    Google Scholar 

  • Blough NV, Zepp RG (1995) Reactive oxygen species in natural waters. In: Foote CS, Valentine JS (eds) Reactive oxygen species in chemistry. Chapman and Hall, London, pp 280–333

    Google Scholar 

  • Blough NV, Zafiriou OC, Bonilla J (1993) Optical absorption spectra of waters from the Orinoco River outflow: Terrestrial input of colored organic matter to the Caribbean. J Geophys Res 98: 2271–2278

    Google Scholar 

  • Bruccoleri A, Pant BC, Sharma DK, Langford CH (1993) Evaluation of primary photoproduct quantum yields in fulvic acid. Environ Sci Technol 27: 889–894

    Article  Google Scholar 

  • Bushaw KL, Zepp RG, Tarr MA, Schulz-Jander D, Bourbonniere RA, Hodson RE, Miller WL, Bronk DA, Moran MA (1996) Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381: 404–407

    Article  Google Scholar 

  • Calkins J, Barcelo J (1982) Action spectra. In: Calkins J (ed) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New York, pp 143–150

    Chapter  Google Scholar 

  • Crumbliss AL (1991) Aqueous solution equilibrium and kinetic studies of iron siderophore and model siderophore complexes. In: Winkelmann G (ed) CRC Handbook of microbial iron chelates. CRC Press, Boca Raton, pp 177–233

    Google Scholar 

  • Davies-Colley RJ, Vant WN (1987) Absorption of light by yellow substance in fresh-water lakes Limnol Oceanogr 32: 416–425

    Google Scholar 

  • Davison W (1993) Iron and manganese in lakes. Earth-Science Rev 34: 119–163

    Article  Google Scholar 

  • Davison W, Seed G (1983) The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim Cosmochim Acta 47: 67–79

    Article  Google Scholar 

  • Deng Y, Stumm W (1994) Reactivity of aquatic iron(III) oxyhydroxides–implications for redox cycling of iron in natural waters. Appl Geochem 9: 23–36

    Article  Google Scholar 

  • DeVitre RR, Buffle J, Perret D, Baudat R (1988) A study of iron and manganese tranformations at the O,,/S(-II) transition layer in a eutrophic lake (lake Bret, Switzerland): A multimethod approach. Geochim Cosmochim Acta 52a6o1–1613

    Google Scholar 

  • Emmenegger L, King DW, Sigg L, Sulzberger B (1998) Oxidation kinetics of Fe(II) in a eutrophic Swiss lake. Environ Sci Technol 32: 2990–2996

    Article  Google Scholar 

  • Faust BC, Hoigné J (1987) Sensitized photooxidation of phenols by fulvic acid and in natural waters. Environ Sci Technol 21: 957–964

    Article  Google Scholar 

  • Faust BC, Zepp RG (1993) Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters. Environ Sci Technol 27: 2517–2522

    Google Scholar 

  • Frimmel FH, Christman RC (1988) Humic substances and their role in the environment. Wiley Interscience, New York

    Google Scholar 

  • Gledhill M, Van den Berg CMG (1995) Measurement of the redox speciation of iron in seawater by catalytic cathodic stripping voltammetry. Mar Chem 50: 51–61

    Article  Google Scholar 

  • Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39: 7337–7346

    Article  Google Scholar 

  • Haag WR, Hoigné J (1986) Singlet oxygen in surface waters. 3. Photochemical formation and steady-state concentrations in various types of waters. Environ Sci Technol 20: 341–348

    Google Scholar 

  • Haag WR, Mill T (1990) Survey of sunlight-produced transient reactants in surface waters. In: Blough NV, Zepp RG (eds) Effects of solar ultraviolet radiation on biogeochemical dynamics in aquatic environments. Woods Hole Oceanographic Insitution Technical Report, WHOI-90-o9, pp 82–88

    Google Scholar 

  • Hedges JI (1992) Global biogeochemical cycles: Progress and problems. Mar Chem 39: 67–93

    Article  Google Scholar 

  • Hedges J, Hatcher, Ertel PJ, Meyers-Schulte KA (191i) Comparison of dissolved humic substances from seawater with Amazon River counterparts by C-NMR spectrometry. Geochim Cosmochim Acta 561753–1757

    Google Scholar 

  • Herndl, GJ, Mueller-Niklas G, Frick J (1993) Major role of ultraviolet-B radiation in controlling bacterioplankton growth in the surface layer of the ocean. Nature 361: 717–719

    Article  Google Scholar 

  • Herndl GJ, Brugger A, Hager S, Kaiser E, Obernosterer I, Reitner B, Slezak D (1997) Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter. Plant Ecology 128: 42–51

    Article  Google Scholar 

  • Hohmann R, Zumbrunn S, Staudenmann J, Schellenberg T, Imboden D, Thierstein H, Eckert V (1990) Der C-Transport von der Atmosphäre in die Tiefsee: Schlüssel zum Verständnis des globalen C-Kreislaufes. Umwelttag 1990 der ETH: Probleme der anthropogenen Klimaänderung, S 93–94

    Google Scholar 

  • Huber SA, Frimmel FH (1994) Direct gel chromatographic characterization and quantification of marine dissolved organic carbon using high-sensitivity DOC detection. Environ Sci Technol 28: 1194–1197

    Article  Google Scholar 

  • Johnson KS, Coale KH, Elrod VA, Tindale NW (1994) Iron photochemistry in seawater from the equatorial Pacific. Mar Chem 46: 319–334

    Article  Google Scholar 

  • Karentz D, Bothwell ML, Coffin RB, Hanson A, Herndl GJ, Kilham SS, Lesser MP, Lindell M, Moeller RE, Morris DP, Neale PJ, Sanders RW, Weiler CS, Wetzel RG (1994) Impact of UV-B radiation on pelagic fresh-water ecosystems: Report of working group on bacteria and phytoplankton. Arch Hydrobiol, Beih Ergebn Limnol 43: 31–69

    Google Scholar 

  • Kieber DJ, McDaniel J, Mopper K (1989) Photochemical source of biological substrates in sea water: Implications for carbon cycling. Nature 341: 637–639

    Google Scholar 

  • Kieber RJ, Zhou X, Mopper K (1990) Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: Fate of riverine carbon in the sea. Limnol Oceanogr 35: 1053–1515

    Google Scholar 

  • King DW (1998) Role of carbonate species on the oxidation rate of Fe(II) in aquatic systems. Environ Sci Technol 32: 2997–3003

    Article  Google Scholar 

  • King DW, Aldrich RA, Charnecki SE (1993) Photochemical redox cycling of iron in NaC1 solutions. Mar Chem 44: 105–120

    Article  Google Scholar 

  • King DW, Lounsbury HA, Millero FJ (1995) Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ Sci Technol 29: 818–824

    Article  Google Scholar 

  • Kuma K, Nishioka N, Matsunaga K (1996) Controls on iron(III) hydroxide solubility in seawater: The influence of pH and organic chelators. Limnol Oceanogr 41: 396–407

    Google Scholar 

  • Leenheer JA, Wershaw RL, Reddy MM (1995a) Stong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia.1. Minor structures. Environ Sci Technol 29: 393–398

    Google Scholar 

  • Leenheer JA, Wershaw RL, Reddy MM (1995b) Stong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures. Environ Sci Technol 29: 399–405

    Google Scholar 

  • Lewis BL, Holt PD, Taylor SW, Wilhelm SW, Trick CG, Butler A, Luther III GW (1995) Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Mar Chem 50: 179–188

    Article  Google Scholar 

  • Liang L, McNabb JA et al. (1993) Kinetics of iron(II) oxygenation at low partial pressure of oxygen in the presence of natural organic matter. Environ Sci Technol 27: 1864–1870

    Article  Google Scholar 

  • Luther III GW, Wu J (1997) What controls dissolved iron concentration in the world ocean - a comment. Mar Chem 57x73–179

    Google Scholar 

  • Mantoura R, Woodward E (1983) Conservative behaviour of riverine dissolved organic carbon in the Severn estuary. Geochim Cosmochim Acta 47: 1293–1309

    Article  Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282: 401–450

    Article  Google Scholar 

  • Meyers-Shulte KJ, Hedges JI (1986) Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321: 61–63

    Article  Google Scholar 

  • Miller GC, Zepp RG (1979) Effects of suspended sediments on photolysis rates of dissolved pollutants. Water Res 13: 453–459

    Article  Google Scholar 

  • Miller WL, Zepp RG (1995) Photochemical production of dissolved inorganic carbon from terrestrial organic matter: Significance to the oceanic organic carbon cycle. Geophys Res Lett 22: 417–420

    Google Scholar 

  • Millero FJ (1988) Effect of ionic interactions on the oxidation of Fe(II) and Cu(I) in natural waters. Mar Chm 28: 1–18

    Article  Google Scholar 

  • Millero FJ (1997) The influence of iron on carbon dioxide in surface seawater. In: Gianguzza A, Pelizzetti

    Google Scholar 

  • E, Sammartano S (eds) Marine Chemistry. Kluwer Academic Publishers, Dordrecht, pp 381–398 Millero FJ, Sotolongo S (1989) The oxidation of Fe(II) with H20, in seawater. Geochim Cosmochim Acta 53: 1867–1873

    Google Scholar 

  • Millero FJ et al. (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51: 793–803

    Article  Google Scholar 

  • Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353: 60–62

    Article  Google Scholar 

  • Perret D, DeVitre RR, Leppard G, Buffle J (1990) Characterizing autochthonous iron particles and colloids–the need for better particle analysis methods. In: Tilzer MM, Serruya C (eds) Large lakes: Ecological structure and function. Springer-Verlag, Heidelberg, pp 224–244

    Chapter  Google Scholar 

  • Reid RT, Butler A (1991) Investigation of the mechanism of iron acquisition by the marine bacterium Alteromonas luteoviolaceus: Characterization of siderophore production. Limnol Oceanogr 36: 1783–1792

    Google Scholar 

  • Reid RT, Live DH, Faulkner DJ, Butler A (1993) A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366: 455–458

    Article  Google Scholar 

  • Rich H, Morel FMM (1990) Availability of well-defined iron colloids to the marine diatom Thalassiosira weissflogii. Limnol Oceanogr 35: 652–662

    Article  Google Scholar 

  • Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50: 117–138

    Article  Google Scholar 

  • Rue EL, Bruland KW (1997) The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol Oceanogr 42: 901–910

    Article  Google Scholar 

  • Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356: 589–593

    Article  Google Scholar 

  • Sigg L, Johnson CA, Kuhn A (1991), Redox conditions and alkalinity generation in a seasonally anoxic lake ( Lake Greifen ). Mar Chem 36: 9–26

    Google Scholar 

  • Singer PhC, Stumm W (1969) Acidic mine drainage–the rate-determining step. Science 167: 1121–1123

    Article  Google Scholar 

  • Stumm W, Lee GF (1961) Oxygenation of ferrous iron. Industrial and Engin Chem 53: 143–146

    Article  Google Scholar 

  • Tarr MA, Miller WL, Zepp RG (1995) Direct carbon monoxide photoproduction from plant matter. J. Geophys Res 100: 11403–11413

    Article  Google Scholar 

  • Theis TL, Singer PC (1974) Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ Sci Technol 8: 569–573

    Article  Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Martinus Nijhoff/DR Junk Publishers, Boston

    Google Scholar 

  • Valentine RL, Zepp RG (1993) Formation of carbon monoxide from the photodegradation of terrestrial dissolved organic carbon in natural waters. Environ Sci Technol 27: 409–412

    Article  Google Scholar 

  • Van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50: 139–157

    Article  Google Scholar 

  • Voelker BM, Sulzberger B (1996) Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ Sci Technol 30: 1106–1114

    Article  Google Scholar 

  • Voelker BM, Morel FMM, Sulzberger B (1997) Iron redox cycling in surface waters: effects of humic substances and light. Environ Sci Technol 31: 1004–1011

    Article  Google Scholar 

  • Wehrli B (1990) Redox reactions of metal ions at mineral surfaces. In: Stumm W (ed) Aquatic chemical kinetics. Wiley Interscience, New York, pp 311–336

    Google Scholar 

  • Wetzel RG (1992) Gradient-dominated ecosystems: Sources and regulatory function of dissolved organic matter in fresh-water ecosystems. Hydrobiol 229: 181–198

    Article  Google Scholar 

  • Wilhelm SW, Trick CG (1994) Iron-limited growth of cyanobacteria: Siderophore production is a common response mechanism. Limnol Oceanogr 39: 1979–1984

    Google Scholar 

  • Winkelmann G, Van der Helm D, Neilands JB (1987) Iron transport in microbes, plants and animals. VCH, Weinheim

    Google Scholar 

  • Wu J, Luther III GW (1995) Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration and a kinetic approach. Mar Chem 50: 159–177

    Article  Google Scholar 

  • Zepp RG (1994) Effects of solar radiation on organic matter cycling: Formation of carbon monoxide and carbonyl sulfide. In: Zepp RG (ed) Climate biosphere interaction: Biogenic emissions and environmental effects of climate change. Wiley Interscience, New York, pp 203–221

    Google Scholar 

  • Zepp RG, Andreae MO (1994) Factors affecting the photochemical production of carbonyl sulfide in seawater. Geophys Res Lett 21: 2813–2816

    Article  Google Scholar 

  • Zepp RG, Schlotzhauer PF (1981) Comparison of the photochemical behavior of various humic substances in water. III. Spectroscopic properties of humic substances. Chemosphere 10: 479–486

    Google Scholar 

  • Zepp RG, Braun A, Hoigné J, Leenheer JA (1987) Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environ Sci Technol 21: 485–490

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sulzberger, B. (2000). Photooxidation of Dissolved Organic Matter: Role for Carbon Bioavailability and for the Penetration Depth of Solar UV-Radiation. In: Gianguzza, A., Pelizetti, E., Sammartano, S. (eds) Chemical Processes in Marine Environments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04207-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04207-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08589-5

  • Online ISBN: 978-3-662-04207-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics