Skip to main content

Marine Organic Geochemistry: A General Overview

  • Chapter
Chemical Processes in Marine Environments

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Organic geochemistry developed traditionally from the petroleum geologists’ need to find and extract petroleum, since a thorough understanding of the chemical principles involved in the origin, migration, accumulation and alteration of petroleum would greatly aid in its discovery. Early on it became clear that organic matter that has been transformed into petroleum and gas was largely of marine origin and was deposited in marine sediments. A more fundamental understanding of the processes of petroleum and gas generation required a better understanding of the cycling of organic matter in the ocean. Simultaneously, there has been increasing awareness of the important role of the ocean in mediating global-scale processes, notably global climate change through the ocean’s buffering capacity for atmospheric carbon dioxide. Further, marine sediments hold the record of past environments, and realistic interpretations of past earth history hinge on understanding the behavior of organic matter in the ocean. It thus becomes important to better characterize the biogeochemical cycles that influence the production and preservation of organic matter in the sea. The term biogeochemistry emphasizes the close linkage between biology, geology, and chemistry into a cross-disciplinary science that strives to define the relationship between the biosphere and the geosphere, and between living and non-living organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard B, Templier J, de Leeuw JW (1998) Artifactual origin of mycobacterial bacteran. Formation of melanoidin-like artifactual macromolecular material during the usual isolation process. Org. Geochem 26: 691–703

    Article  Google Scholar 

  • Aluwihare LI, Repeta DJ, Chen RF (1997) A major biopolymeric component to dissolved organic carbon in surface seawater. Nature 387: 166–169

    Article  Google Scholar 

  • Arnosti C, Repeta DJ (1994) Extracellular enzyme activity in anaerobic bacterial cultures: Evidence of pullulanase activity among mesophilic marine bacteria. Appl Environ Microbiol 60: 840–846

    Google Scholar 

  • Arnosti C, Repeta DJ, Blough NV (1994) Rapid bacterial degradation of polysaccharides in anoxic marine systems. Geochim Cosmochim Acta 58: 2639–2652

    Article  Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: The plot thickens. Science 280: 694–606

    Article  Google Scholar 

  • Bada JL (1972) The dating of fossil bones using the racemization of isoleucine. Earth Plan Sci Lett 15: 223–231

    Article  Google Scholar 

  • Bada JL, Schroeder RA (1972) Racemization of isoleucine in calcareous marine sediments: Kinetics and mechanisms. Earth Plan Sci Lett 15: 1–11

    Article  Google Scholar 

  • Bada JL, Schroeder RA (1975) Amino acid racemization reactions and their geochemical implications. Naturwissenschaften 62: 71–79

    Article  Google Scholar 

  • Bada JL, Luykendyk BP, Maynard JB (1970) Marine sediments: Dating by the racemization of amino acids. Science 170: 730–732

    Article  Google Scholar 

  • Bada JL, Protsch R, Schroder RA (1973) The racemization reaction of isoleucine used as a paleo-temperature indicator. Nature 241: 394–395

    Article  Google Scholar 

  • Billen G (1991) Protein degradation in aquatic environments. In: ChrĂłst RJ (ed) Microbial enzymes in aquatic environments. Springer-Verlag, New York, pp 123–143

    Chapter  Google Scholar 

  • Brassell SC (1993) Application of biomarkers for delineating marine paleoclimatic fluctuations during the pleistocene. In: Engel MH, Macko SA (eds) Organic geochemistry. Principles and applications. Plenum Press, New York, pp 699–638

    Chapter  Google Scholar 

  • Button DK (1993) Nutrient-limited microbial growth kinetics: Overview and recent advances. Antonie van Leeuwenhoek 63: 225–235

    Article  Google Scholar 

  • Callot HJ (1991) Geochemistry of chlorophylls. In: Sheer H (ed) Chlorophylls. CRC Press, Boca Raton, PP 339–364

    Google Scholar 

  • Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114: 315–329

    Article  Google Scholar 

  • Canuel EA, Martens CS (1996) Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface. Geochim Cosmochim Acta 60: 1793–1805

    Article  Google Scholar 

  • Conte MH, Volkman JK, Eglinton G (1994) Lipid biomarkers of the prymnesiophyceae. In: Green JC, Leadbetter BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 351–377

    Google Scholar 

  • Cowie GL, Hedges JI (1984) Carbohydrate sources in a coastal marine environment. Geochim Cosmochim Acta 48: 2075–2087

    Article  Google Scholar 

  • Cowie GL, Hedges JI (1992) Sources and reactivities of amino acids in a coastal marine environment. Limnol Oceanogr 37: 703–724

    Article  Google Scholar 

  • Cowie GL, Hedges JI (1994) Biochemical indicators of diagenetic alteration in natural organic matter mixtures. Nature 369: 304–307

    Article  Google Scholar 

  • Cowie GL, Hedges JI (1996) Degestion and alteration of the biochemical constituents of a diatom (Thalassiosira weissflogii) ingested by a herbivorous zooplankton (Calanus pacificus). Limnol Oceanogr 41: 581–594

    Article  Google Scholar 

  • Cranwell PA (1982) Lipids of aquatic sediments and sedimenting particles. Prog Lipid Res 21: 271–308

    Article  Google Scholar 

  • De Baar HJW, Farrington JW, Wakeham SG (1983) Vertical flux of fatty acids in the North Atlantic Ocean. J Mar Res 41: 19–41

    Article  Google Scholar 

  • Degens ET, Mopper K (1976) Factors controlling the distribution and diagenesis of organic materials in marine sediments. In: Riley JP, Chester R (eds) Chemical oceanography. Academic Press, London

    Google Scholar 

  • Deming JW, Baross JA (1993) The early diagenesis of organic matter: Bacterial activity. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 119–144

    Chapter  Google Scholar 

  • Dixon M, Webb EC (1964) Enzymes. Academic Press, London Edmunds KLH, Brassell SC, Eglinton G (1980) The short-term diagenetic fate of 5a-cholestan-3Ăź-ol: In situ radiolabelled incubations in algal mats. In: Douglas, AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 427–434

    Google Scholar 

  • Emerson S, Hedges JI (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3: 621–634

    Article  Google Scholar 

  • Farrington JW, Tripp BW (1977) Hydrocarbons in western North Atlantic sediments. Geochim Cosmochim Acta 41: 1627–1641

    Article  Google Scholar 

  • Fenchel T, Blackburn TH (1979) Bacteria and mineral cycling. Academic Press, London

    Google Scholar 

  • Gagosian RB, Smith SO, Lee C, Farrington JW, Frew NM (1980) Steroid transformations in recent marine sediments. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 407–419

    Google Scholar 

  • Gaskell SJ, Morris RJ, Eglinton G, Calvert SE (1975) The geochemistry of a recent marine sediment off northwest Africa. An assessment of source of input and early diagenesis. Deep-Sea Res 22: 777–789

    Google Scholar 

  • Gillan FT, Nichols PD, Johns RB, Savor HJ (1983) Phytol degradation by marine bacteria. Appl Environ Microbiol 41: 1423–1428

    Google Scholar 

  • Goni MA, Hedges JI (199oa) Cutin-derived CuO reaction products from purified cuticles and tree leaves. Geochim Cosmochim Acta 54: 3065–3072

    Google Scholar 

  • Goni MA, Hedges JI (199ob) Potential applications of cutin-derived CUO reaction products for discriminating vascular plant sources in natural environments. Geochim Cosmochim Acta 54: 3073–3081

    Google Scholar 

  • Goni MA, Hedges JI (1990c) The diagenetic behavior of cutin acids in buried conifer needles and sediments from a coastal marine environment. Geochim Cosmochim Acta 54: 3083–3093

    Article  Google Scholar 

  • Goni MA, Hedges JI (1992) Lignin dimers: Structures, distribution, and potential geochemical applications. Geochim Cosmochim Acta 56: 4025–4043

    Article  Google Scholar 

  • Goni MA, Nelson B, Blanchette RA, Hedges JI (1993) Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers. Geochim Cosmochim Acta 57: 3985–4002

    Article  Google Scholar 

  • Goodwin TW, Mercer EI (1972) Introduction to plant biochemistry, Pergamon Press, Oxford

    Google Scholar 

  • Haake B, Ittekkot V, Ramaswamy V, Nair RR, Honjo S (1992) Fluxes of amino acids and hexosamines to the deep Arabian Sea. Mar Chem 40: 291–314

    Article  Google Scholar 

  • Haddad RI, Martens CS (1987) Biogeochemical cycling in an organic-rich coastal marine basin: 9. Sources and accumulation rates of vascular plant-derived organic material. Geochim Cosmochim Acta 51: 2991–3001

    Article  Google Scholar 

  • Harradine PJ, Maxwell JR (1998) Pyrophaeoporphyrins c1 and c2: Grazing products of chlorophyll c in aquatic environments. Org Geochem 28: 111–117

    Article  Google Scholar 

  • Harvey HR, Macko SA (1997a) Catalysts or contributors? Tracking bacterial mediation of early diagenesis in the marine water column. Org Geochem 26: 531–544

    Article  Google Scholar 

  • Harvey HR, Macko SA (1997b) Kinetics of phytoplankton decay during simulated sedimentation: Changes in lipids under oxic and anoxic conditions. Org Geochem 27: 129–140

    Article  Google Scholar 

  • Harvey HR, Tuttle JH, Bell JT (1995) Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim Cosmochim Acta 59: 3367–3377

    Article  Google Scholar 

  • Hedges JI (1992) Global biogeochemical cycles: Progress and problems. Mar Chem 39: 67–93

    Article  Google Scholar 

  • Hedges JI, Ertel JR (1982) Characterization of lignin by capillary gas chromatography of cupric oxide oxidation products. Anal Chem 54: 174–178

    Article  Google Scholar 

  • Hedges JI, Mann DC (1979a) The characterization of plant tissues by their lignin oxidation products. Geochim Cosmochim Acta 43: 1803–1807

    Article  Google Scholar 

  • Hedges JI, Mann DC (1979b) The lignin geochemistry of marine sediments from the southern Washington coast. Geochim Cosmochim Acta 43: 1809–1818

    Article  Google Scholar 

  • Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Org Geochem 27: 319–361

    Article  Google Scholar 

  • Hedges JI, Parker PL (1976) Land-derived organic matter in surface sediments from the Gulf of Mexico. Geochim Cosmochim Acta 40: 1019–1029

    Article  Google Scholar 

  • Hedges JI, Blanchette RA, Weliky K, Devol AH (1988a) Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study. Geochim Cosmochim Acta 52: 2717–2726

    Article  Google Scholar 

  • Hedges JI, Clark WA, Cowie GL (1988b) Organic matter sources to the water column and surficial sediments of a marine bay. Limnol Oceanogr 33: 1116–1136

    Article  Google Scholar 

  • Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the ocean carbon economy. Geomicrobiol J 5: 191–237

    Article  Google Scholar 

  • Ittekkot V, Deuser W, Degens ET (1984a) Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Sargasso Sea. Deep-Sea Res 31: 1057–1069

    Article  Google Scholar 

  • Ittekkot V, Deuser W, Degens ET (1984b) Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Panama Basin. Deep-Sea Res 31: 1071–1083

    Article  Google Scholar 

  • Jorgensen NOG, Sondergaard M (1984) Are dissolved free amino acids free? Microb Ecol 10: 301–316

    Article  Google Scholar 

  • Keil RG, Tsamakis E, Giddings JC, Hedges JI (1998) Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washing ton coast. Geochim Cosmochim Acta 62: 1347–1364

    Article  Google Scholar 

  • King LL, Repeta DJ (1994) Phorbin steryl esters in Black Sea sediment traps and sediments: A preliminary evaluation of their paleoceanographic potential. Geochim Cosmochim Acta 58: 4389–4399

    Article  Google Scholar 

  • King LL, Wakeham SG (1996) Phorbin steryl ester formation by macrozooplankton in the Sargasso Sea. Org Geochem 24: 581–585

    Article  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: The microbial degradation of lignin. Annu Rev Microbiol 41: 465–505

    Article  Google Scholar 

  • Lee C (1992) Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim Cosmochim Acta 56: 3323–3335

    Article  Google Scholar 

  • Lee C, Cronin C (1982) The vertical flux of particulate organic nitrogen in the sea: Decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. J Mar Res 40: 227–251

    Google Scholar 

  • Lee C, Cronin C (1984) Particulate amino acids in the sea: Effects of primary productivity and biological decomposition. J Mar Res 42: 1075–1097

    Article  Google Scholar 

  • Lee C, Wakeham SG (1988) Organic matter in seawater: Biogeochemical processes. In: Riley JP (ed) Chemical oceanography, vol IX. Academic Press, New York, pp 1–51

    Google Scholar 

  • Leeuw JW de, Baas M (1986) Early-stage diagenesis of steroids. In: Johns, RB (ed) Biological markers in the sedimentary record. Elsevier, New York, pp 101–123

    Google Scholar 

  • Leeuw JW de, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry. Principles and applications. Plenum Press, New York, pp 23–72 Lehninger AL (1981) Biochemistry. Worth Publishers, New York

    Google Scholar 

  • Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982) Chemical fossils: The geological fate of steroids. Science 217: 491–504

    Article  Google Scholar 

  • Mayer LM (1993) Organic matter at the sediment-water interface. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 171–184

    Chapter  Google Scholar 

  • McCarthy M, Pratum T, Hedges J, Benner R (1997) Chemical composition of dissolved organic nitrogen in the ocean. Nature 390: 150–154

    Article  Google Scholar 

  • Meister A (1965) Biochemistry of the amino acids. Academic Press, London

    Google Scholar 

  • Mermoud F, WĂĽnsche L, Clerc O, GĂĽlacar FO, Buchs A (1984) Steroidal ketones in the early diagenetic transformations of ?5 sterols in different types of sediments. Org Geochem 6: 25–29

    Article  Google Scholar 

  • Mitterer RM (1993) The diagenesis of proteins and amino acids in fossil shells. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 739–753

    Chapter  Google Scholar 

  • Montani S, Okaichi T (1985) Amino acid variations in marine particles during sinking and sedimentation in Harima-Nada, the Seto Inland Sea. In: Sigleo AC, Hattori A (eds) Marine and estuarine geochemistry. Lewis Publishers, New York, pp 15–27

    Google Scholar 

  • MĂĽller PJ, Suess E, Ungerer CA (1986) Amino acids and amino sugars of surface particulate and sediment trap material from waters of the Scotia Sea. Deep-Sea Res 33: 819–838

    Article  Google Scholar 

  • Nishimura M (1978) Geochemical characteristics of the high reduction zone of stenols in Suwa sediments and the environmental factors controlling the conversion of stenols into stanols. Geochim Cosmochim Acta 42: 349–357

    Article  Google Scholar 

  • Parsons TR, Stephens K, Strickland JDH (1961) On the chemical composition of eleven species of marine phytoplankton. J Fish Res Bd Canada 18: 1001–1016

    Article  Google Scholar 

  • Parsons TR, Takahashi M, Hargrave B (1984) Biological oceanographic processes. Pergamon Press, Oxford

    Google Scholar 

  • Pedersen TF, Calvert SE (1990) Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? Amer Assoc Petrol Geol Bull 74: 454–466

    Google Scholar 

  • Prahl FG, Eglinton G, Corner EDS, O’Hara SCM (1984) Copepod fecal pellets as a source of dihydrophytol in marine sediments. Science 224: 1235–1237

    Article  Google Scholar 

  • Prahl FG, Ertel JR, Goni MA, Sparrow MA, Eversmeyer B (1994) Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim Cosmochim Acta 58: 035–3048

    Article  Google Scholar 

  • Philp RP, Calvin M (1976) Possible origin for insoluble organic (kerogen) debris in sediment from insoluble cell-wall materials of algae and bacteria. Nature 262: 134–136

    Article  Google Scholar 

  • Repeta DJ, Gagosian RB (1984) Transformation reactions and recycling of carotenoids and chlorines in the Peru upwelling region (15° S, 175° W). Geochim Cosmochim Acta 48: 1265–1277

    Article  Google Scholar 

  • Richnow HH, Jenisch A, Michaelis W (1993) The chemical structure of macromolecular fractions of a sulfur-rich oil. Geochim Cosmochim Acta 57: 2767–2780

    Article  Google Scholar 

  • Santos V, Billett DSM, Rice AL, Wolff GA (1994) Organic matter in deep-sea sediments from the Porcupine Abyssal Plain in the north-east Atlantic Ocean. I. Lipids. Deep-Sea Res 41: 787–819

    Article  Google Scholar 

  • Sargent JR (1976) The structure, function, and metabolism of lipids in marine organisms. In: Malins DC, Sargent JR (eds) Biochemical and biophysical perspectives in marine biology, vol III. Academic Press, New York, pp 149–212

    Google Scholar 

  • Sargent JR, Henderson RJ (1986) Lipids. In: Corner EDS, O’Hara SCM (eds) The biological chemistry of marine copepods. Clarendon Press, Oxford, pp 59–108

    Google Scholar 

  • Sargent JR, Parkes RJ, Mueller-Harvey I, Henderson RJ (1987) Lipid biomarkers in marine ecology. In: Sleigh MA (ed) Microbes in the sea. Ellis Horwood, New York, pp 119–138

    Google Scholar 

  • Sarkanen K, Ludwig CH (eds) (1971) Lignins. Wiley Interscience, London

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. An analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Schroeder RA, Bada JL (1973) Glacial-postglacial temperature difference deduced from aspartic acid racemization in fossil bones. Science 182: 479–482

    Article  Google Scholar 

  • Sinninghe DamstĂ© JS, de Leeuw JW (1993) Analysis, structure and geochemical significance of organically-bound sulfur in the geosphere: State of the art and future research. Org Geochem 16: 1077–1101

    Article  Google Scholar 

  • Smetacek V, Hendrikson P (1979) Composition of particulate organic matter in Kiel Bight in relation to phytoplankton succession. Oceanol Acta 2: 287–298

    Google Scholar 

  • Steinberg SM, Bada JL (1983) Peptide decomposition in the neutral pH region via the formation of diketopiperazines. J Org Chem 48: 2295–2298

    Article  Google Scholar 

  • Steinberg SM, Venkatesan MI, Kaplan IR (1987) Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.–Part I. Amino acids, carbohydrates and lignin. Mar Chem 21: 249–265

    Google Scholar 

  • Summons RE (1993) Biogeochemical cycles. A review of fundamental aspects of organic matter formation, preservation and composition. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 3–21

    Chapter  Google Scholar 

  • Sun M-Y, Lee C, Aller RC (1993) Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island sediments. Geochim Cosmochim Acta 57: 47–157

    Article  Google Scholar 

  • Sun M-Y, Wakeham SG, Lee C (1997) Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound. Geochim Cosmochim Acta 61: 341–355

    Article  Google Scholar 

  • Sun M-Y, Wakeham SG, Aller RC, Lee C (1998) Impact of seasonal hypoxia on diagenesis of phytol and its derivatives in Long Island Sound. Mar Chem 62: 157–173

    Article  Google Scholar 

  • Tanoue E, Handa N (1987) Monosaccharide composition of marine particles and sediments from the Bering Sea and northern North Pacific. Oceanol Acta 10: 91–99

    Google Scholar 

  • Tanoue E, Handa N, Sakugawa H (1982): Difference in chemical composition of organic matter between fecal pellet of Euphausia superba and its feed, Duniella tertiolecta. Trans Tokyo Univ Fish 5: 189–196

    Google Scholar 

  • Tegelaar EW, de Leeuw JW, Derenne S, Largeau C (1989) A reappraisal of kerogen formation Geochim Cosmochim Acta 53: 3103–3106

    Article  Google Scholar 

  • Tissot B, Welte D (1984) Petroleum formation. Springer Verlag, Berlin

    Google Scholar 

  • Litman D (1976) Ecological competition between algae: Experimental confirmation of resource-based competition theory. Science 192: 463–465

    Article  Google Scholar 

  • Valiela I (1995) Marine ecological processes. Springer-Verlag, New York

    Book  Google Scholar 

  • Venkatesan MI, Ruth E, Steinberg S, Kaplan IR (1987) Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.–Part II. Lipids. Mar Chem 21: 267–299

    Article  Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9: 83–99

    Article  Google Scholar 

  • Volkman JK, Maxwell JR (1986) Acyclic isoprenoids as biological markers. In: Johns RB (ed) Biological markers in the sedimentary record. Elsevier, New York, pp 1–42

    Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of to species of microalgae used in mariculture. J Exp Mar Biol Ecol 128: 219–240

    Article  Google Scholar 

  • Wada E, Hattori A (1991) Nitrogen in the Sea: Forms, abundances, and rate processes. CRC Press, Boca Raton Wakeham SG (1989) Reduction of stenols to stanols in particulate organic matter at oxic-anoxic boundaries in seawater. Nature 342: 787–790

    Google Scholar 

  • Wakeham SG, Lee C (1989) Organic geochemistry of particulate matter in the ocean: The role of particles in oceanic sedimentary cycles. Org Geochem 14: 83–96

    Article  Google Scholar 

  • Wakeham S, Lee C (1993) Production, transport, and alteration of particulate organic matter in the marine water column. In: Engel M, Macko S (eds) Organic geochemistry. Plenum Press, New York, pp 145–169

    Chapter  Google Scholar 

  • Wakeham SG, Farrington JW, Gagosian RB (1984a) Variability in lipid flux and composition of particulate matter in the Peru upwelling region. Org Geochem 6: 203–215

    Article  Google Scholar 

  • Wakeham SG, Gagosian RB, Farrington JW, Canuel EA (1984b) Sterenes in suspended particulate matter in the eastern tropical North Pacific. Nature 308: 840–843

    Article  Google Scholar 

  • Wakeham SG, Hedges JI, Lee C, Pease TK (1993) Effects of poisons and preservatives on the composition of organic matter in a sediment trap experiment. J Mar Res 51: 669–696

    Article  Google Scholar 

  • Wakeham SG, Hedges JI, Lee C, Hernes PJ, Peterson ML (1997a) Molecular indicators of diagenetic status in marine organic matter. Geochim Cosmochim Acta 61: 5363–5369

    Article  Google Scholar 

  • Wakeham SG, Hedges JI, Lee C, Peterson ML, Hernes PJ (1997b) Compositions and fluxes of lipids through the water column and surficial sediments of the equatorial Pacific Ocean. Deep-Sea Res II 44: 2131–2162

    Article  Google Scholar 

  • Wefer G, Suess E, Balzer B, Leibezeit G, MĂĽller PJ, Lingerer CA, Zenk W (1982) Fluxes of biogenic components from sediment trap deployments in circumpolar waters of the Drake Passage. Nature 299: 145–147

    Article  Google Scholar 

  • Westrich JT, Berner RA (1984) The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol Oceanogr 29: 236–249

    Article  Google Scholar 

  • Wehmiller JF, Hare PE (1971) Racemization of amino acids in marine sediments. Science 173: 907–911

    Article  Google Scholar 

  • Whelan JK (1977) Amino acids in a surface sediment core of the Atlantic abyssal plain. Geochim Cosmochim Acta 41: 803–810

    Article  Google Scholar 

  • Williams PM, Druffel ERM (1987) Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330: 246–248

    Article  Google Scholar 

  • Wright RT, Hobbie JE (1966) Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–453

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pantoja, S., Wakeham, S. (2000). Marine Organic Geochemistry: A General Overview. In: Gianguzza, A., Pelizetti, E., Sammartano, S. (eds) Chemical Processes in Marine Environments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04207-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04207-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08589-5

  • Online ISBN: 978-3-662-04207-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics