Skip to main content

119Sn Mössbauer Spectroscopy Studies on the Interaction of Organotin(IV) Salts and Complexes with Biological Systems and Molecules

  • Chapter
Chemical Processes in Marine Environments

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Organotin(IV) compounds are widely spread out in the environment (Blunden and Chapman 1986), owing to their industrial uses (Blunden et al.1985; Evans 1998). Interacting with living organisms, effects are provoked on biological systems and functions (Thayer 1984; Arakawa 1998; Smith 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa Y (1998) Recent studies on the mode of biological action of di-and tri-alkyltin compounds. In: Smith PJ (ed) Chemistry of tin. Blackie Acad and Prof, London, pp 388–428

    Chapter  Google Scholar 

  • Baczynskyj L, Biemann K, Hall RH (1968) Sulfur-containing nucleoside from yeast transfer ribonucleic acid: 2-thin-5 (or 6) -uridine acetic acid methyl ester. Science 159x481–1483

    Google Scholar 

  • Barbieri A (1995) Sintesi e caratterizzazione di complessi di Sn(IV), R„Sn(IV) e Fe(II,III). Studio dell’interazione di Alk„Sn(I V) con DNA nativo (Alk= Me, Et; n = 2, 3). Thesis for Ph.D. degree, University of Palermo

    Google Scholar 

  • Barbieri A, Giuliani AM, Ruisi G, Silvestri A, Barbieri R (1995) Tin(IV), monomethyltin(IV) and dimethyltin(IV) complexes with thiol sulphur and heterocyclic nitrogen donors: Molecular dynamics and structure by “9Sn Mössbauer spectroscopy. Z Anorg Allg Chem 621: 89–96

    Google Scholar 

  • Barbieri R (1956) Separazione e dosaggio dei mononucleotidi degli acidi nucleici del fegato; ricerche sulla incorporazione di fosfato marcato con 32P. Thesis for Master degree in Chemistry, University of Padua

    Google Scholar 

  • Barbieri R, Musmeci MT (1988) A 119Sn Mössbauer spectroscopic study on the interaction of dimethyltin(IV) derivatives with rat hemoglobin, and of related model systems in aqueous solution. J Inorg Biochem 32: 89–108

    Article  Google Scholar 

  • Barbieri R, Silvestri A (1984) The correlation between tin-119 Mössbauer isomer shifts and atomic charges on tin in five-coordinated tin(IV) derivatives. J Chem Soc Dalton Trans 1019–1025

    Google Scholar 

  • Barbieri R, Silvestri A (1991) The interaction of native DNA with dimethyltin(IV) species. J Inorg Biochem 41: 31–35

    Article  Google Scholar 

  • Barbieri R, Belluco U, Tagliavini G (1958) Separazione cromatografica su carta di composti metallorganici di piombo e stagno. Annali di Chimica 48:940–949

    Google Scholar 

  • Barbieri R, Alonzo G, Herber RH (1987) Configuration and lattice dynamics of complexes of dialkyltin(IV) with adenosine-5’-monophosphate and phenyl phosphates. J Chem Soc Dalton Trans 789–794

    Google Scholar 

  • Barbieri R, Silvestri A, Filippeschi S, Magistrelli M, Huber F (1990) Studies on the antitumor activity of complexes of R2Sn(IV) with penicillamine enantiomers and with 3-thio-propanoic acid, and correlation with structural aspects. Inorg Chim Acta 177: 141–144

    Article  Google Scholar 

  • Barbieri R, Silvestri A, Giuliani AM, Piro V, Di Simone F, Madonia G (1992) Organotin compounds and deoxyribonucleic acid. J Chem Soc Dalton Trans 585–590

    Google Scholar 

  • Barbieri R, Ruisi G, Silvestri A, Giuliani AM, Barbieri A, Spina G, Pieralli F, Del Giallo F (1995) Dynamics of tin nuclei in alkyltin(IV)-deoxyribonucleic acid condensates by variable temperature tin-119 Mössbauer spectroscopy. J Chem Soc Dalton Trans 467–475

    Google Scholar 

  • Barbieri R, Huber F, Pellerito L, Ruisi G, Silvestri A (1998) 119-m Sn Mössbauer studies on tin compounds. In: Smith PJ (ed) Chemistry of tin. Blackie Acad and Prof, London, pp 496-54o

    Google Scholar 

  • Barbieri R, Huber F, Silvestri A, Ruisi G, Rossi M, Barone G, Barbieri Paulsen A (1999) The interaction of S, N-coordinated dimethyltin(IV) derivatives with deoxyribonucleic acid: structure and dynamics by 119Sn Mössbauer spectroscopy. Appl Organometal Chem 13: 595–603

    Google Scholar 

  • Barone G (1997) Interazione di acido deossiribonucleico (DNA), e molecole costituenti, con (CH3)„Sn(IV) (n = 1–3 ). Thesis for Ph.D. Degree in Chemistry, University of Palermo

    Google Scholar 

  • Bauer C, Wang AHJ (1997) Bridged cobalt amine complexes induce DNA conformational changes ef-fectively. J Inorg Biochem 68:129–135

    Google Scholar 

  • Berthon G (1995) Handbook of metal-ligand interactions in biological fluids. M Dekker, New York Black CB, Huang HW, Cowan JA (1994) Biological coordination chemistry of magnesium, sodium, and potassium ions. Protein and nucleotide binding sites. Coord Chem Revs 135/136:165–202

    Google Scholar 

  • Bloomfield V A (1996) DNA condensation. Current Opinion in Struct Biol 6: 334–341

    Article  Google Scholar 

  • Blunden SJ, Chapman A (1986) Organotin compounds in the environment. In: Craig PJ (ed) Organo-metallic compounds in the environment. Wiley, New York, pp 111–159

    Google Scholar 

  • Blunden SJ, Cusack PA, Hill R (1985) The industrial uses of tin chemicals. The Royal Society of Chemistry, London

    Google Scholar 

  • Boggon TJ, Hancox EL, Mc Auley-Hecht KE, Connolly BA, Hunter WN, Brown T, Walker RT, Leonard GA (1996) The crystal structure analysis of d(CGCGAASSCGCG)2, a synthetic DNA dodecamer duplex containing four 4’-thio-2’-deoxythymidine nucleotides. Nucleic Acid Res 24:951–961

    Google Scholar 

  • Bregadze VG (1996) Metal ion interactions with DNA: considerations on structure, stability, and effects from metal ion binding. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXII. M Dekker, New York, pp 419–451

    Google Scholar 

  • Burrows CJ, Rokita SE (1996) Nickel complexes as probes of guanine sites in nucleic acid folding. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXIII. M Dekker, New York, pp 537–560

    Google Scholar 

  • Carbon JA, Hung L, Jones DS (1965) A reversible oxidative inactivation of specific transfer RNA spe-cies. Proc NY Natl Acad Sci US 53:979–986

    Google Scholar 

  • Carbon J, David H, Studier MH (1968) Thiobases in Escherichia coli transfer RNA: 2-thiocytosine and 5-methylaminomethy1–2-thiouracil. Science 161: 1146–1147

    Article  Google Scholar 

  • Cessi C, Turco A (1956) Incorporazione del fosfato radioattivo negli acidi nucleici del fegato nell’intossicazione difterica. Giornale di Biochimica V: 124–133

    Google Scholar 

  • Cheatham TE, Kollman PA (1997) Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT]Z in the presence of hexaamminecobalt(III). Structure 5: 1297–1311

    Article  Google Scholar 

  • Clarke MJ, Stubbs M (1996) Interactions of metallopharmaceuticals with DNA. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXII. M Dekker, New York, pp 727–780

    Google Scholar 

  • Cusumano M, Di Pietro ML, Giannetto A, Nicolò F, Rotondo E (1998) Noncovalent interactions of platinum(II) square planar complexes containing ligands out-of-plane with DNA. Inorg Chem 37: 563–568

    Article  Google Scholar 

  • Draganescu A, Tullius TD (1996) Targeting of nucleic acids by iron complexes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXIII. M Dekker, New York, pp 453–484

    Google Scholar 

  • Dubler E (1996) Metal complexes of sulfur-containing purine derivatives. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXII. M Dekker, New York, pp 301–338

    Google Scholar 

  • Eng G, Bathersfield O, May L (1986) Mössbauer studies of the speciation of tributyltin compounds in seawater and sediment samples. Water Air Soil Pollut 27: 191–197

    Article  Google Scholar 

  • Evans Cl (1998) Industrial uses of tin chemicals. In: Smith PJ (ed.) Chemistry of tin. Blackie Acad and Prof, London, pp 442–479

    Google Scholar 

  • Gravert DJ, Griffin JH (1996) Specific DNA cleavage by manganese(III) complexes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXIII. M Dekker, New York, pp 515–536

    Google Scholar 

  • Gruenwedel DW (1985) Circular dichroism of micrococcal nuclease-treated calf-thymus chromatin (soluble chromatin) in presence of CH3HgOH. J Inorg Biochem 25: 109–120

    Article  Google Scholar 

  • Gruenwedel DW, Cruikshank MK (1990) Mercury-induced DNA polymorphism: Probing the conformation of Hg(II)-DNA via staphylococcal nuclease digestion and circular dichroism measurements. Biochemistry 29: 2110–2116

    Google Scholar 

  • Harada W, Nojima T, Shibayama A, Ueda H, Shindo H, Chikira M (1996) How amino acids control the binding of Cu(II) ions to DNA. I. The role of the hydroxyl group of serine and threonine in fixing the orientation of the complexes. J Inorg Biochem 64: 273–285

    Google Scholar 

  • Harrison SC, Sauer RT (eds) (1994) Protein-nucleic acid interaction. Curr Opin Struct Biol 4:1–66 Heitner HI, Lippard SJ, Sunshine HR (1972) Metal binding by thionucleosides. J Amer Chem Soc 94:8936-8937

    Google Scholar 

  • Holm RH, Kennepohl P, Solomon EI (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96:2239–2314

    Google Scholar 

  • Huber F, Schmiedgen R, Schürmann M, Barbieri R, Ruisi G, Silvestri A (1997) Mono-organotin(IV) and tin(IV) derivatives of 2-mercaptopyridine and 2-mercaptopyrimidine: X-ray structures of methyltris(2-pyridinethiolato)tin(IV) and phenyltris(z-pyridinethiolato)tin(IV)•1.5CHC13. Appl Organometal Chem 11: 869–888

    Article  Google Scholar 

  • Hynes MJ, O’Dowd M (1987) Interaction of the trimethyltin(IV) cation with carboxylic acids, amino acids, and related ligands. J Chem soc Dalton Trans 563–566

    Google Scholar 

  • Jacquet L, Davies RJH, Kirsch de Mesmaecker A, Kelly JM (1997) Photoaddition of Ru(tap)2(bpy)2+ to DNA: A new mode of covalent attachment of metal complexes to duplex DNA. J Am Chem Soc 119: 11763–11768

    Google Scholar 

  • Jin L, Yang P (1997) Synthesis and DNA binding studies of cobalt(III) mixed-polypyridyl complex. J Inorg Biochem 68: 79–83

    Article  Google Scholar 

  • Kieft JS, Tinoco I Jr (1997) Solution structure of a metal-binding site in the major groove of RNA complexes with cobalt(III) hexammine. Structure 5: 713–721

    Article  Google Scholar 

  • Kimura E, Shionoya M (1996) Zinc complexes as targeting agents for nucleic acids. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXIII. M Dekker, New York, pp 29–52

    Google Scholar 

  • Kjaer EB (1992) Bioactive materials for antifouling coatings. Progress Org Coatings, 20:339–352

    Google Scholar 

  • Kosaganov YN, Stetsenko DA, Lubyako EN, Kvitko NP, Lazurkin YS (1998) Stability of DNA complexes with peptide nucleic acid. Molecular Biology 32ao5–1o8

    Google Scholar 

  • Kowalik-Jankowska T, Varnagy K, Swiatek-Kozlowska J, Jon A, Sovago I, Sochacka E, Malkiewicz A, Spychala J, Kozlowski H (1997) Role of sulfur site in metal binding to thiopurine and thiopyrimidine nucleosides. J Inorg Biochem 65: 257–262

    Article  Google Scholar 

  • Kozelka J (1996) Molecular modeling of transition metal complexes with nucleic acids and their constituents. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXIII. M Dekker, New York, pp 1–28

    Google Scholar 

  • Li Q, Jin N, Yang P, Wan J (1997) Interaction of Et2SnC12(phen) with nucleotides. Synth React Inorg Met-Org Chem 27: 811–823

    Article  Google Scholar 

  • Li Q, Yang P, Hua E, Tian C (1996a) Diorganotin(IV) antitumor agents. Aqueous and solid-state coordination chemistry of nucleotides with R2SnC12. J Coord Chem 40: 227–236

    Article  Google Scholar 

  • Li Q, Yang P, Wang H, Guo M (1996b) Diorganotin(IV) antitumor agent. (C2H5)2SnC12(phen)/ nucleotides aqueous and solid-state coordination chemistry and its DNA binding studies. J Inorg Biochem 64: 181–195

    Article  Google Scholar 

  • Lippert B (1997) Effects of metal-ion binding on nucleobase pairing: Stabilization, prevention and mismatch formation. J Chem Soc Dalton Trans 3971–3976

    Google Scholar 

  • Lipsett MN (1965) The behavior of 4-thiouridine in the E. coli s-RNA molecule. Biochem Biophys Res Commun 20: 224–229

    Article  Google Scholar 

  • Long EC, Denney Eason P, Liang Q (1996) Synthetic metallopeptides as probes of protein-DNA interactions. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXIII. M Dekker, New York, pp 427–452

    Google Scholar 

  • Lucero RA, Otieno MA, May L, Eng G (1992) Speciation of some triphenyltin compounds in estuarine sediments using Mössbauer spectroscopy. Appl Organometal Chem 6: 273–278

    Article  Google Scholar 

  • Mac Donnell FM (1995) Reexamining the Mössbauer effect as a means to cleave DNA. Biochemistry 34: 12871–12876

    Article  Google Scholar 

  • Magda D, Wright M, Crofts S, Lin A, Sessler JL (1997) Metal complex conjugates of antisense DNA which display ribozyme-like activity. J Am Chem Soc 119:6947–6948

    Google Scholar 

  • Maguire RJ (1987) Environmental aspects of tributyltin. Appl Organometal Chem 1: 475–498

    Article  Google Scholar 

  • Maguire RJ (1991) Aquatic environmental aspects of non-pesticidal organotin compounds. Water Poll Res J Canada 26:243–360

    Google Scholar 

  • Mandal SS, Varshney U, Bhattacharya S (1997) Role of the central metal ion and ligand charge in the DNA binding and modification by metallosalen complexes. Bioconjugate Chem 8: 798–812

    Article  Google Scholar 

  • May L, Whalen D, Eng G (1993) Interaction of triorganotin compounds with Chesapeake Bay sediments and benthos. Appl Organometal Chem 7:437-441

    Google Scholar 

  • May L, Berhane L, Berhane M, Counsil C, Keane M, Reed BB, Eng G (1994) The speciation of some tributyltin compounds using Mössbauer spectroscopy in different estuarine sediments. Water Air Soil Pollut 75: 293–306

    Google Scholar 

  • Miller DP, Craig PJ (1998) The analysis of organotin compounds from the natural environment. In: Smith PJ (ed.) Chemistry of tin. Blackie Acad and Prof, London, pp 540–565

    Google Scholar 

  • Musmeci MT, Madonia G, Lo Giudice MT, Silvestri A, Ruisi G, Barbieri R (1992) Interactions of organotins with biological systems. Appl Organometal Chem 6: 127–138

    Article  Google Scholar 

  • Navarro JAR, Salas JM, Romero MA, Vilaplana R, Gonzalez-Vilchez F, Faure R (1998) cis-[PtC12(4,7H-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine)2]: A sterically restrictive new cisplatin analogue. Reaction kinetics with model nucleobases, DNA interaction studies, antitumor activity, and structure-activity relationships. J Med Chem 41: 332–338

    Google Scholar 

  • Nielsen PE (1997) Peptide nucleic acid (PNA). From DNA recognition to antisense and DNA structure. Biophysical Chemistry 68: 103–108

    Article  Google Scholar 

  • Nielsen PE, Haaima G (1997) Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone. Chemical Society Reviews 73–78

    Google Scholar 

  • Nordén B, Lincoln P, Akerman B, Tuite E (1996) DNA interactions with substitution-inert transition metal ion complexes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXIII. M Dekker, New York, pp 177–252

    Google Scholar 

  • Nordmeier E (1995) Advances in polyelectrolyte research: Counterion binding phenomena, dynamic processes, and the helix-coil transition of DNA. Macromol Chem Phys 196: 1321–1374

    Article  Google Scholar 

  • Patel BK, Eckstein F (1997) 5’-deoxy-5’-thioribonucleoside-5’-triphosphate. Tetrahedron Lett 38x021–1024

    Google Scholar 

  • Petering DH, Mao Q, Li W, De Rose E, Antholine WE (1996) Metallobleomycin-DNA interactions: struc-tures and reactions related to bleomycin-induced DNA damage. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXIII. M Dekker, New York, pp 619–648

    Google Scholar 

  • Phillips SEV, Moras D (eds) (1995) Protein-nucleic acid interactions. Current Opinion in Structural Biology 5: 1–55

    Google Scholar 

  • Piro V, Di Simone F, Madonia G, Silvestri A, Giuliani AM, Ruisi G, Barbieri R (1992) The interaction of organotins with native DNA. Appl Organometal Chem 6: 537–542

    Article  Google Scholar 

  • Posante S (1996) Organostagno(IV) e acido deossiribonucleico: dinamica e struttura.Thesis for master degree in Chemistry, University of Palermo (Italy)

    Google Scholar 

  • Reich Z, Ittah Y, Weinberger S, Minsky A (1990) Chiral and structural discrimination in binding of polipeptides with condensed nucleic acid structures. J Biol Chem 265:5590–5594

    Google Scholar 

  • Rhodes D, Burley SK (eds) (1997) Protein-nucleic acid interactions. Current Opinion in Structural Biology 7: 73–134

    Google Scholar 

  • Riccoboni L (1937) Comportamento elettrolitico di alcuni composti metallorganici dello stagno. Atti Istituto Veneto Scienze, Lettere ed Arti, XCVI: 183–192

    Google Scholar 

  • Richmond TJ, Steitz TA (eds) (1998) Protein-nucleic acid interactions. Current Opinion in Structural Biology 8: 11–63

    Google Scholar 

  • Rossi M (1994) Interazione di DNA nativo con composti organometallici dello stagno. Thesis for master degree in chemistry, University of Palermo (Italy)

    Google Scholar 

  • Sabat M (1996) Ternary metal ion-nucleic acid base-protein complexes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXII. M Dekker, New York, pp 521–555

    Google Scholar 

  • Sauer RT, Harrison SC (eds) (1996) Protein-nucleic acid interactions. Current Opinion in Structural Biology 6: 51–100

    Google Scholar 

  • Schmiedgen R, Huber F, Preut H, Ruisi G, Barbieri R (1994) Synthesis and characterization of diorganotin(IV) derivatives of z-mercaptopyridine and crystal structure of diphenyl pyridine-2-thiolatochlorotin(IV). Appl Organometal Chem 8:397-407

    Google Scholar 

  • Schmiedgen R, Huber F, Silvestri A, Ruisi G, Rossi M, Barbieri R (1998) Diorganotin(IV)-2-mercaptopyrimidine complexes. Appl Organometal Chem. 12: 861–871

    Article  Google Scholar 

  • Schürmann M (1994) Untersuchungen zur Darstellung und Struktur von Mono-und Diarylblei(IV)Acetaten sowie von Monoarylblei(IV) und Monoorganozinn(IV)-Derivaten. Thesis for master degree in Chemistry, University of Dortmund (Germany)

    Google Scholar 

  • Sigman DS, Landgraf R, Perrin DM, Pearson L (1996) Nucleic acid chemistry of the cuprous complexes of 1,10-phenantroline and derivatives. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXIII. M Dekker, New York, pp 485–513

    Google Scholar 

  • Silvestri A, Duca D, Huber F (1988) A study of dimethyltin(IV)-L-cysteinate in aqueous solution. Appl Organometal Chem 2:417–425

    Google Scholar 

  • Singh K, Groth-Vasselli B, Farnsworth PN, Rai DK (1996) Effect of thiobase incorporation into du-plex DNA during the polymerization reaction. Res Commun Mol Pathol and Pharmacol 94: 129–140

    Google Scholar 

  • Smith PJ (1998) Health and safety aspects of tin chemicals. In: Smith PJ (ed) Chemistry of tin. Blackie Acad and Prof, London, pp 429–441

    Google Scholar 

  • Tagliavini G, Cattalini L, Belluco U (1962) Ricerche sui composti metallorganici dello stagno. Reazione tra stagno tetrametile, stagno tetraetile e nitrato mercuroso. La Ricerca Scientifica, 32 (IIA): 286–290

    Google Scholar 

  • Thayer JS (1984) Organometallic compounds and living organisms. Acad Press, NewYork

    Google Scholar 

  • Tuite E, Lincoln P, Nordén B (1997) Photophysical evidence that A- and A-[Ru(phen)2dppz)12+ inter-calate DNA from the minor groove. J Am Chem Soc 119:239–240

    Google Scholar 

  • Wang H, Osborne SE, Zuiderweg ERP, Glick GD (1994) Three-dimensional structure of a disulfide-stabilized non-ground-state DNA hairpin. J Amer Chem Soc 116: 5021–5022

    Google Scholar 

  • Whalen D, Lucero R, May L, Eng G (1993) The effects of salinity and pH on the speciation of some triphenyltin compounds in estuarine sediments using Mössbauer spectroscopy. Appl Organometal Chem, 7: 219–222

    Google Scholar 

  • Wu JZ, Li L, Zeng TX, Ji LN, Zhou JY, Luo T, Li RH (1997) Synthesis, characterization and luminescent DNA-binding study of a series of ruthenium complexes containing 2-arylimidazo[f]1,10-phenanthroline. Polyhedron 16: 103–107

    Article  Google Scholar 

  • Yam VWW, Lo KKW, Cheung KK, Kong RYC (1997) Deoxyribonucleic acid binding and photocleavage studies of rhenium(I) dipyridophenazine complexes. J Chem Soc Dalton Trans 2067–2072

    Google Scholar 

  • Yamauchi O, Odani A, Masuda H, Sigel H (1996) Stacking interactions involving nucleotides and metal ion complexes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol XXXII. M Dekker, New York, pp 207–270

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barbieri, R. et al. (2000). 119Sn Mössbauer Spectroscopy Studies on the Interaction of Organotin(IV) Salts and Complexes with Biological Systems and Molecules. In: Gianguzza, A., Pelizetti, E., Sammartano, S. (eds) Chemical Processes in Marine Environments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04207-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04207-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08589-5

  • Online ISBN: 978-3-662-04207-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics