Root Methods pp 403-459 | Cite as

Assessing the Ability of Roots for Nutrient Acquisition

  • Ch. Engels
  • G. Neumann
  • T. S. Gahoonia
  • E. George
  • M. Schenk


Nutrient acquisition by roots from soil is a complex process which is dependent on several root features: (1) morphological root characteristics, including mycorrhizal associations, which determine the extent of the interface between plant and soil (2) ability to modify the nutrient availability in the rhizosphere, and (3) ability for nutrient uptake through the plasma membranes (for reviews see Barber 1984; Clarkson 1985; Marschner 1995). The relative importance of these factors for nutrient acquisition is dependent on environmental conditions and the specific nutrient, particularly its chemical availability and mobility in the soil.


Nutrient Solution Root Exudate Rhizosphere Soil External Solution Nutrient Acquisition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Brundrett MC, Melville L, Peterson RL (1994) Practical methods in mycorrhizal research. Mycologue Publications, Waterloo, CanadaGoogle Scholar
  2. Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. 2nd edn. Marcel Dekker, New York, pp 483–510Google Scholar
  3. Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5: 29–56CrossRefGoogle Scholar
  4. Jones JB Jr, Case VW (1990) Sampling, handling and analyzing plant tissue samples. In: Westerman RL (ed) Soil testing and plant analysis. Soil Science Society of America, Madison, pp 389–427Google Scholar
  5. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar


  1. Alef K (1995) Sterilization of soil and inhibition of microbial activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 52–54Google Scholar
  2. Amann C, Amberger A (1989) Phosphorus efficiency of buckwheat (Fagopyrum esculentum). Z Pflanzenernähr Bodenkd 152: 181–189CrossRefGoogle Scholar
  3. Armstrong J, Armstrong W, Beckett PM (1992) Venturi-and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol 120: 197–207CrossRefGoogle Scholar
  4. Aslam M, Travis RL, Huffaker RC (1994) Stimulation of nitrate and nitrite efflux by ammonium in barley (Hordeum vulgare L.) seedlings. Plant Physiol 106: 1293–1301PubMedGoogle Scholar
  5. Azaizeh HA, Marschner H, Römheld V, Wittenmayer L (1995) Effects of vesicular-arbuscular fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5: 321–327CrossRefGoogle Scholar
  6. Barber DA, Gunn KB (1974) The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions. New Phytol 73: 39–45CrossRefGoogle Scholar
  7. Barber SA (1984) Soil nutrient bioavailability. A mechanistic approach. John Wiley, New YorkGoogle Scholar
  8. Barber SA, Ozanne PG (1970) Autoradiographic evidence for the differential effect of four plant species in altering the Ca content of the rhizosphere soil. Soil Sci Soc Am Proc 34: 635–637CrossRefGoogle Scholar
  9. Bartlett EM, Lewis DH (1973) Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol Biochem 5: 249–257CrossRefGoogle Scholar
  10. Basson WD, Bohne RG, Stanton DA (1969) An automated procedure for the determination of boron in plant tissue. Analyst 94: 1135–1141CrossRefGoogle Scholar
  11. Benjamin LR, Peach L, van Woerden IC, Oppelaar A (1996) A technique to estimate the radial extent of active mineral absorption by individual plants in carrot stands. J Exp Bot 47: 687–692CrossRefGoogle Scholar
  12. Bhat KKS, Nye PH (1973) Diffusion of phosphate to the plant roots in soil. Quantitative autoradiography of the depletion zone. Plant Soil 38: 161–175Google Scholar
  13. Bieleski RL, Johnson PN (1972) The external location of phosphatase activity in phosphorus-deficient Spirodela oligorrhiza. Aust J Biol Sci 25: 707–720Google Scholar
  14. Bienfait HF, Bino R), van der Bliek AM, Duivenvoorden JR, Fontaine JM (1983) Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol Plant 59: 196–202CrossRefGoogle Scholar
  15. Bisswanger H (1994) Enzymkinetik. Theorie und Methoden. VCH-Verlag WeinheimGoogle Scholar
  16. Bloom AJ, Caldwell RM (1988) Root excision decreases nutrient absorption and gas fluxes. Plant Physiol 87: 794–796PubMedCrossRefGoogle Scholar
  17. Bloom AJ, Sukrapanna SS (1990) Effects of exposure to ammonium and transplant shock upon the induction of nitrate absorption. Plant Physiol 94: 85–90PubMedCrossRefGoogle Scholar
  18. Boero G, Thien S (1979) Phosphatase activity and phosphorus availability in the rhizosphere of corn roots. In: Harley JL, Russell S (eds) Soil-root interface. Academic Press, LondonGoogle Scholar
  19. Boeuf-Tremblay V, Plantureux S, Guckert A (1995) Influence of mechanical impedance on root exudation of maize seedlings at two developmental stages. Plant Soil 172: 279–287Google Scholar
  20. Böhm W (1979) Methods of studying root systems. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  21. Brady DJ, Gregory PJ, Fillery IRP (1993) The contribution of different regions of the seminal roots of wheat to uptake of nitrate from soil. Plant Soil 155 /156: 155–158CrossRefGoogle Scholar
  22. Brown JC, Ambler JE (1974) Iron stress response in tomato (Lycopersicon esculentum). 1. Sites of Fe reduction, absorption and transport. Physiol Plant 31: 221–224Google Scholar
  23. Brundrett MC, Piché Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62: 2128–2134CrossRefGoogle Scholar
  24. Brundrett MC, Melville L, Peterson RL (1994) Practical methods in mycorrhizal research. Mycologue Publications, Waterloo, CanadaGoogle Scholar
  25. Cairney JWG, Ashford AE (1989) Reducing activity at the root surface in Eucalyptus pilularisPisolithus tinctorius ectomycorrhizas. Aust J Plant Physiol 16: 99–105CrossRefGoogle Scholar
  26. Cakmak I, Marschner H (1988) Increase in membrane permeability and exudation in roots of zinc deficient plants. J Plant Physiol 132: 356–361CrossRefGoogle Scholar
  27. Canning RE, Kramer PJ (1958) Salt absorption and accumulation in various regions of roots. Am J Bot 45: 378–382CrossRefGoogle Scholar
  28. Canny MJ, McCully ME (1988) The xylem sap of maize roots: its collection, composition and formation. Aust J Plant Physiol 15: 557–566CrossRefGoogle Scholar
  29. Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84: 315–321CrossRefGoogle Scholar
  30. Chang CW, Bandurski RS (1964) Exocellular enzymes of corn roots. Plant Physiol 39: 60–64PubMedCrossRefGoogle Scholar
  31. Chapin FS III, Van Cleve K (1989) Approaches to studying nutrient uptake, use and loss in plants. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology. Field methods and instrumentation. Chapman and Hall, London, pp 185–207CrossRefGoogle Scholar
  32. Chapin FS III, Van Cleeve K, Tyron PR (1986) Relationship of ion absorption to growth rate in taiga trees. Oecologia 69: 238–242CrossRefGoogle Scholar
  33. Claassen N, Barber SA (1974) A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiol 54: 564–568PubMedCrossRefGoogle Scholar
  34. Claassen N, Jungk A (1982) Kaliumdynamik im wurzelnahen Boden in Beziehung zur Kaliumaufnahme von Maispflanzen. Z Pflanzenernähr Bodenkd 145: 513–525CrossRefGoogle Scholar
  35. Claassen N, Hendriks L, Jungk A (1981) Erfassung der Mineralstoffverteilung im wurzelnahen Boden durch Autoradiographie. Z Pflanzenernähr Bodenkd 144: 306–316CrossRefGoogle Scholar
  36. Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36: 77–115CrossRefGoogle Scholar
  37. Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 483–470Google Scholar
  38. Clarkson DT, Saker LR, Purves JV (1989) Depression of nitrate and ammonium transport in barley plants with diminished sulphate status. Evidence of co-regulation of nitrogen and sulphate intake. J Exp Bot 40: 953–963Google Scholar
  39. Clarkson DT, Gojon A, Saker LR, Wiersema PK, Purves JV, Tillard P, Arnold GM, Paans AJM, Vaalburg W, Stulen I (1996) Nitrate and ammonium influxes in soybean (Glycine max) roots: direct comparison of “N and 15N tracing. Plant Cell Environ 19: 859–868CrossRefGoogle Scholar
  40. Cornish-Bowden A (1995) Analysis of enzyme kinetic data. Oxford University Press, OxfordGoogle Scholar
  41. Cruz C, Lips SH, Martins-Louçao MA (1995) Uptake regions of inorganic nitrogen in roots of carob seedlings. Physiol Plant 95: 167–175CrossRefGoogle Scholar
  42. Darrah PR (1996) Rhizodeposition under ambient and elevated CO2 levels. Plant Soil 187: 265–275CrossRefGoogle Scholar
  43. Deane-Drummond CE (1990) Biochemical and biophysical aspects of nitrate uptake and its regulation. In: YP Abrol (ed) Nitrogen in higher plants. Research Studies Press, Taunton, UK, 37 ppGoogle Scholar
  44. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107: 315–321PubMedGoogle Scholar
  45. Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103: 695–702Google Scholar
  46. Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 144: 199–205CrossRefGoogle Scholar
  47. Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12: 285–292CrossRefGoogle Scholar
  48. Dinkelaker B, Hahn G, Römheld V, Wolf GA, Marschner H (1993a) Non-destructive methods for demonstrating chemical changes in the rhizosphere I. Description of methods. Plant Soil 155 /156: 67–70CrossRefGoogle Scholar
  49. Dinkelaker B, Hahn G, Marschner H (1993b) Non-destructive methods for demonstrating chem- ical changes in the rhizosphere II. Application of methods. Plant Soil 155 /156: 71–74CrossRefGoogle Scholar
  50. Dinkelaker B, Hengeler C, Neumann G, Eltrop L, Marschner H (1996) Root exudates and mobilization of nutrients. In: Rennenberg H, Eschrich W (eds) Trees–contributions to modern tree physiology. SPB Academic Publishing, Amsterdam, pp 3–14Google Scholar
  51. Dinkelaker B, Hengeler C, Neumann G, Eltrop L, Marschner H (1997) Root exudates and mobilization of nutrients. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees–contributions to modern tree physiology, Backhuys, Leiden, The Netherlands, pp 441–451Google Scholar
  52. Drew MC, Saker LR (1975) Nutrient supply and the growth of the seminal root system in barley. II. Localized compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J Exp Bot 29: 79–90Google Scholar
  53. Drew MC, Saker LR (1986) Ion transport to the xylem in aerenchymatous roots of Zea mays L. J Exp Bot 37: 22–33CrossRefGoogle Scholar
  54. Drew MC, Saker LR, Barber SA, Jenkins W (1984) Changes in the kinetics of phosphate and potassium absorption in nutrient-deficient barley roots measured by a solution-depletion technique. Planta 160: 490–499CrossRefGoogle Scholar
  55. Elliott GC, Lynch J, Läuchli A (1984) Influx and efflux of P in roots of intact maize plants. Plant Physiol 76: 336–341PubMedCrossRefGoogle Scholar
  56. Else MA, Davies WJ, Whitford PN, Hall KC, Jackson MB (1994) Concentrations of abscisic acid and other solutes in xylem sap from root systems of tomato and castor-oil plants are distorted by wounding and variable sap flow rates. J Exp Bot 45: 317–323CrossRefGoogle Scholar
  57. Else MA, Hall KC, Arnold GM, Davies WJ, Jackson MB (1995) Export of abscisic acid, 1aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Accounting for effects of xylem sap flow rate on concentration and delivery. Plant Physiol 107: 377–384Google Scholar
  58. Engels C, Marschner H (1992) Root to shoot translocation of macronutrients in relation to shoot demand in maize (Zea mays L.) grown at different root zone temperatures. Z Pflanzenernähr Bodenkd 155: 121–128CrossRefGoogle Scholar
  59. Engels C, Buerkert B, Marschner H (1994) Nitrogen and sugar concentrations in the xylem exudate of field-grown maize at different growth stages and levels of nitrogen fertilization. Eur J Agron 3: 197–204Google Scholar
  60. Epstein E, Schmid WE, Rains DW (1963) Significance and technique of short-term experiments on solute absorption by plant tissue. Plant Cell Physiol 4: 79–84Google Scholar
  61. Ernst M, Römheld V, Marschner H (1989) Estimation of phosphorus uptake capacity by different zones of the primary root of soil-grown maize (Zea mays L.). Z Pflanzenernähr Bodenkd 152: 21–25CrossRefGoogle Scholar
  62. Farr E, Vaidynathan V, Nye PH (1969) Measurement of ionic concentration gradients in soil near roots. Soil Sci 107: 385–391CrossRefGoogle Scholar
  63. Feldman C (1961) Evaporation of boron from acid solutions and residues. Anal Chem 33: 1916–1920CrossRefGoogle Scholar
  64. Felipe MR, Pozuelo JM, Cintas AM (1979) Acid phosphatase localization at the surface of young corn roots. Agrochimica 23: 143–150Google Scholar
  65. Fitter AH (1986) Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia 69: 594–599CrossRefGoogle Scholar
  66. Flessa H, Fischer WR (1992) Redoxprozesse in der Rhizosphäre von Land-and Sumpfpflanzen. Z Pflanzenernähr Bodenkd 155: 373–378CrossRefGoogle Scholar
  67. Fox TC, Shaff JE, Grusak MA, Norvell WA, Chen Y, Chaney RL, Kochian LV (1996) Direct measurement of 59Fe-labeled Fe“ influx in roots of pea using a chelator buffer system to control free Fe’ in solution. Plant Physiol 111: 93–100PubMedGoogle Scholar
  68. Gahoonia TS (1993) Influence of root-induced pH on the solubility of soil aluminium in the rhizosphere. Plant Soil 149: 289–291CrossRefGoogle Scholar
  69. Gahoonia TS, Nielsen NE (1991) A method to study rhizosphere processes in thin soil layers of different proximity to roots. Plant Soil 135: 143–148CrossRefGoogle Scholar
  70. Gahoonia TS, Nielsen NE (1992) Control of pH at soil-root interface. Plant Soil 140: 49–54CrossRefGoogle Scholar
  71. Gahoonia TS, Claassen N, Jungk A (1992) Mobilization of phosphorus in different soils by rye-grass supplied with ammonium and nitrate. Plant Soil 143: 241–248CrossRefGoogle Scholar
  72. George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15: 257–270CrossRefGoogle Scholar
  73. George E, Gorgus E, Schmeisser A, Marschner H (1996) A method to measure nutrient uptake from soil by mycorrhizal hyphae. In: Azcon-Aguilar C, Barea JM. Mycorrhizas in integrated systems from genes to plant development. Office for Official Publications of the European Community, Luxembourg, pp 535–538Google Scholar
  74. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting. Trans Br Mycol Soc 46: 235–244CrossRefGoogle Scholar
  75. Gericke S, Kurmies B (1952) Die colorimetrische Phosphorsäurebestimmung mit AmmoniumVanadat-Molybdat and ihre Anwendung in der Pflanzenanalyse. Z Pflanzenernähr Düng Bodenkd 59: 235–247Google Scholar
  76. Gerke J, Römer W, Jungk A (1994) The excretion of citric and malic acid by proteoid roots of Lupinus albus L.: effects on soil solution concentrations of phosphate, iron, and aluminium in the proteoid rhizosphere samples of an oxisol and a luvisol. Z Pflanzenernähr Bodenkd 157: 289–294CrossRefGoogle Scholar
  77. Gil de Carrasco C, Guzman M, Lorente FA, Urrestarazu M (1994) Xylem sap extraction: a method. Commun Soil Sci Plant Anal 25: 1829–1839CrossRefGoogle Scholar
  78. Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84: 489–500CrossRefGoogle Scholar
  79. Glass ADM, Shaff JE, Kochian LV (1992) Studies of the uptake of nitrate in barley IV. Electrophysiology. Plant Physiol 93: 456–463Google Scholar
  80. Gollany HT, Schumacher TE (1993) Combined use of colorimetric and microelectrode methods for evaluating rhizosphere pH. Plant Soil 154: 151–159CrossRefGoogle Scholar
  81. Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geo-derma 69: 147–156CrossRefGoogle Scholar
  82. Goyal SS, Huffaker RC (1986) A novel approach and a fully automated microcomputer-based system to study kinetics of NO3-, NO2-, and NH,’ transport simultaneously by intact wheat seedlings. Plant Cell Environ 9: 209–215Google Scholar
  83. Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95: 1160–1162CrossRefGoogle Scholar
  84. Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5: 29–56CrossRefGoogle Scholar
  85. Grierson PF (1992) Organic acids in the rhizosphere of Banksia integrifolia L. Plant Soil 144: 259–265CrossRefGoogle Scholar
  86. Grzebisz W, Floris J, van Noordwijk M (1989) Loss of dry matter and cell contents from fibrous roots of sugar beet due to sampling, storage and washing. Plant Soil 113: 53–57CrossRefGoogle Scholar
  87. Hamel C, Fyles H, Smith DL (1990) Measurement of development of endomycorrhizal mycelium using three different vital stains. New Phytol 115: 297–302CrossRefGoogle Scholar
  88. Harrison SJ, Lepp NW, Phipps DA (1978) Uptake of copper by excised roots. I. A modified experimental technique for measuring ion uptake by excised roots, and its application in determining uptake characteristics of “free” copper ions in excised Hordeum roots. Z Pflanzenphysiol 90: 443–450Google Scholar
  89. Harrison SJ, Lepp NW, Phipps DA (1979) Uptake of copper by excised roots. II. Copper desorption from the free space. Z Pflanzenphysiol 94: 27–34Google Scholar
  90. Harrison-Murray RS, Clarkson DT (1973) Relationships between structural development and the absorption of ions by the root system of Cucurbita pepo. Planta 114: 1–16CrossRefGoogle Scholar
  91. Häussling M, Leisen E, Marschner H, Römheld V (1985) An improved method for nondestructive measurements of the pH at the root-soil interface (rhizosphere). J Plant Physiol 117: 371–375PubMedCrossRefGoogle Scholar
  92. Häussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz Ch, Marschner H (1988) Ion and water uptake in relation to root development in Norway spruce [Picea abies ( L.) Karst.]. J Plant Physiol 133: 486–491Google Scholar
  93. Hawkins H-J, George E (1997) Hydroponic culture of the mycorrhizal fungus Glomus messeae with Linum usitatissimum L., Sorghum bicolor L. and Triticum aestivum L. Plant Soil 196: 143–149CrossRefGoogle Scholar
  94. Headley AD, Callaghan TV, Lee JA (1985) The phosphorus economy of the evergreen tundra plant, Lycopodium annotinum. Oikos 45: 235–245CrossRefGoogle Scholar
  95. Helal HM, Sauerbeck D (1983) A method to study turnover processes in soil layers of different proximity to roots. Soil Biol Biochem 15: 223–225CrossRefGoogle Scholar
  96. Hendriks L, Jungk A (1981) Erfassung der Mineralstoffverteilung in Wurzelnähe durch getrennte Analyse von Rhizo-and Restboden. Z Pflanzenernähr Bodenkd 144: 276–282CrossRefGoogle Scholar
  97. Henriksen GH, Bloom AJ, Spanswick RM (1990) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. Plant Physiol 93: 271–280PubMedCrossRefGoogle Scholar
  98. Henriksen GH, Raman DR, Walker LP, Spanswick RM (1992) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. II. Patterns of uptake along the root axis and evaluation of the microelectrode flux estimation technique. Plant Physiol 99: 734–747Google Scholar
  99. Hether NH, Olsen RA, Jackson LL (1984) Chemical identification of iron reductants exuded by plant roots. J Plant Nutr 7: 667–676CrossRefGoogle Scholar
  100. Hodge A, Grayston SI, Ord BG (1996) A novel method for characterisation and quantification of plant root exudates. Plant Soil 184: 97–104CrossRefGoogle Scholar
  101. Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant Soil 113: 161–165Google Scholar
  102. Högberg P, Jensen P, Näsholm T, Ohlsson H (1995) Uptake of ‘Mg by excised pine roots: a preliminary study. Plant Soil 172: 323–326CrossRefGoogle Scholar
  103. Horst WI, Wagner A, Marschner H (1982) Mucilage protects root meristems from aluminium injury. Z Pflanzenphysiol 105: 435–444Google Scholar
  104. Horst WJ, Asher CJ, Cakmak I, Szulkiewicz P, Wissemeier AH (1992) Short-term responses of soybean roots to aluminium. J Plant Physiol 140: 174–178CrossRefGoogle Scholar
  105. Hülster A, Marschner H (1994) PCDD/PCDF-Transfer in Zuchini and Tomaten. Veröff PAÖ 8: 579–589Google Scholar
  106. Jackson RB, Manwaring JH, Caldwell MM (1990) Rapid physiological adjustment of roots to localized soil enrichment. Nature 344: 58–60PubMedCrossRefGoogle Scholar
  107. Jaillard B, Ruiz L, Arvieu IC (1996) pH mapping in transparent gel using color videodensitometry. Plant Soil 183: 85–95Google Scholar
  108. Janzen HH (1990) Deposition of nitrogen into rhizosphere by wheat root. Soil Biol Biochem 22: 1155–1160CrossRefGoogle Scholar
  109. Jeschke WD, Pate JS (1995) Mineral nutrition and transport in xylem and phloem of Banksia prionotes ( Proteaceae), a tree with dimorphic root morphology. J Exp Bot 46: 895–905Google Scholar
  110. Jeschke WD, Klagges S, Bhatti AS (1996) Collection and composition of xylem sap and root structure in two halophytic species. Plant Soil 172: 97–106CrossRefGoogle Scholar
  111. Johnson LF, Curl EA (1972) Control of soil environment. In: Johnson LF, Curl EA (eds) Methods for research on the ecology of soil-borne plant pathogens. Burgess Publishing Company, Minneapolis, pp 82–91Google Scholar
  112. Johnson JF, Allan DL, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Plant Physiol 112: 19–30PubMedCrossRefGoogle Scholar
  113. Jones DL, Darrah PR (1992) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. I. Resorption of “C labelled glucose, mannose and citric acid. Plant Soil 143: 259–266Google Scholar
  114. Jones DL, Darrah PR (1993) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere II. Plant Soil 153: 47–59CrossRefGoogle Scholar
  115. Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163: 1–12Google Scholar
  116. Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil 173: 103–109CrossRefGoogle Scholar
  117. Jones JB Jr, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. In: Westerman RL (ed) Soil testing and plant analysis. Soil Science Society of America, Madison, pp 389–427Google Scholar
  118. Kape R, Wex K, Parniske M, Görge E, Wetzel A, Werner D (1992) Legume root metabolites and VA-mycorrhiza development. J Plant Physiol 141: 54–60CrossRefGoogle Scholar
  119. Karpov EA, Potapov NG (1975) Reducing activity of the root surfaces in corn plants in connection with its differentiation and absorptive capacity. Fiziol Rast 22: 298–304Google Scholar
  120. Keith H, Oades IM, Martin IK (1986) Input of carbon to soil from wheat plants. Soil Biol Biochem 18: 445–449CrossRefGoogle Scholar
  121. Kraus M, Fusseder A, Beck E (1987) In situ determination of the phosphate gradient around a root by radioautography of frozen soil sections. Plant Soil 97: 407–418CrossRefGoogle Scholar
  122. Kronzucker HJ, Siddiqi MY, Glass ADM (1995) Compartmentation and flux characteristics of ammonium in spruce. Planta 196: 691–698CrossRefGoogle Scholar
  123. Kuchenbuch R, Jungk A (1982) A method for determining concentration profiles at soil-root interface by thin slicing rhizosphere soil. Plant Soil 68: 391–394CrossRefGoogle Scholar
  124. Kuchenbuch R, Jungk A (1984) Wirkung der Kaliumdüngung auf die Kaliumverfügbarkeit in der Rhizosphäre von Raps. Z Pflanzenernähr Bodenkd 147: 435–448CrossRefGoogle Scholar
  125. Kurien S, Goswami AM, Deb DL (1992) Root activity of two citrus rootstocks assessed using radiotracer techniques. J Hortic Sci 67: 87–94Google Scholar
  126. Lavy TL, Barber SA (1964) Movement of molybdenum in soil and its effect on availability to the plants. Soil Sci Soc Am Proc 28: 93–97CrossRefGoogle Scholar
  127. Lazof DB, Rufty TW Jr, Redinbaugh MG (1992) Localization of nitrate absorption and translocation within morphological regions of the corn root. Plant Physiol 100: 1251–1258PubMedCrossRefGoogle Scholar
  128. Lee RB (1993) Control of net uptake of nutrients by regulation of influx in barley plants recovering from nutrient deficiency. Ann Bot 72: 225–230CrossRefGoogle Scholar
  129. Lee RB, Clarkson DT (1986) Nitrogen-13 studies of nitrate fluxes in barley roots. I. Compartmental analysis from measurements of 13N efflux. J Exp Bot 37: 1753–1767CrossRefGoogle Scholar
  130. Lee RB, Drew MC (1986) Nitrogen-13 studies of nitrate fluxes in barley roots. II. Effect of plant N-status on the kinetic parameters of nitrate influx. J Exp Bot 37: 1768–1779Google Scholar
  131. Leiser AT (1968) A mucilaginous root sheat in Ericaceae. Am J Bot 55: 391–398CrossRefGoogle Scholar
  132. Léon M, Lainé P, Ourry A, Boucaud J (1995) Increased uptake of native soil nitrogen by roots of Lolium multiflorum Lam. after nitrogen fertilization is explained by a stimulation of the uptake process itself. Plant Soil 173: 197–203CrossRefGoogle Scholar
  133. Li XL, George E, Marschner H (1991) Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol 119: 397–404CrossRefGoogle Scholar
  134. Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85: 315–317PubMedCrossRefGoogle Scholar
  135. Maathuis FJM, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Physiol Plant 96: 158–168CrossRefGoogle Scholar
  136. Macduff JH, Jackson SB (1992) Influx and efflux of nitrate and ammonium in Italian ryegrass and white clover roots: comparisons between effects of darkness and defoliation. J Exp Bot 43: 525–535CrossRefGoogle Scholar
  137. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  138. Marschner H, Richter C (1973) Akkumulation and Translokation von K’, Na’ and Ca’ bei Angebot zu einzelnen Wurzelzonen von Maiskeimpflanzen. Z Pflanzenernähr Bodenkd 135: 1–15Google Scholar
  139. Marschner H, Römheld V (1983) In vivo measurement of root-induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Z Pflanzenphysiol 111: 241–251Google Scholar
  140. Marschner H, Römheld V, Ossenberg-Neuhaus H (1982) Rapid method for measuring changes in pH and reducing processes along roots of intact plants. Z Pflanzenphysiol 105: 407–416Google Scholar
  141. Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9: 695–713CrossRefGoogle Scholar
  142. Marschner H, Römheld V, Kissel M (1987) Localization of phytosiderophore release and iron uptake along intact barley roots. Physiol Plant 71: 157–162CrossRefGoogle Scholar
  143. Marschner H, Häussling M, George E (1991) Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies ( L.) Karst.]. Trees 5: 14–21Google Scholar
  144. Matzner SL, Richards JH (1996) Sagebrush (Artemisia tridentata Nutt.) roots maintain nutrient uptake capacity under water stress. J Exp Bot 47: 1045–1056CrossRefGoogle Scholar
  145. McKane RB, Grigal DF (1990) Spatiotemporal differences in 15N uptake and the organization of an old-field plant community. Ecology 71: 1126–1132CrossRefGoogle Scholar
  146. Meharg AA, Kilham K (1991) A novel method of quantifying root exudation in the presence of soil microflora. Plant Soil 133: 111–116CrossRefGoogle Scholar
  147. Meharg AA, Kilham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170: 345–349CrossRefGoogle Scholar
  148. Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47: 843–854CrossRefGoogle Scholar
  149. Miller DM (1981) Pressure-flow characteristics of the roots of Zea mays. Plant Soil 63: 15–18CrossRefGoogle Scholar
  150. Minorsky PV, Spanswick RM (1989) Electrophysiological evidence for a role for calcium in temperature sensing by roots of cucumber seedlings. Plant Cell Environ 12: 137–143CrossRefGoogle Scholar
  151. Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans. Root exudation of citric acid. Plant Physiol 96: 737–743Google Scholar
  152. Morel JL, Mench M, Guckert A (1986) Measurement of Pb’, Cu’ and Cd’ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2: 29–34CrossRefGoogle Scholar
  153. Moritsugu M, Shibasaka M, Kawasaki T (1993) Where is the most important and efficient site for absorption and translocation of cations in excised barley roots? Soil Sci Plant Nutr 39: 299–307CrossRefGoogle Scholar
  154. Muller B, Tillard P, Touraine B (1995) Nitrate fluxes in soybean seedling roots and their response to amino acids: an approach using 15N. Plant Cell Environ 18: 1267–1279CrossRefGoogle Scholar
  155. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural water. Anal Chim Acta 27: 31–36CrossRefGoogle Scholar
  156. Neumann G, Dinkelaker B, Marschner H (1995) Kurzzeitige Abgabe organischer Säuren aus Proteoidwurzeln von Hakea undulata (Proteaceae). In: Merbach W (ed) Pflanzliche Stoffaufnahme and mikrobielle Wechselwirkungen in der Rhizosphäre. BG Teubner, Stuttgart, pp 129–136Google Scholar
  157. Newman IA, Kochian LV, Grusak MA, Lucas WJ (1987) Fluxes of H’ and K’ in corn roots: characterization and stoichiometries using microelectrodes. Plant Physiol 84: 1177–1184PubMedCrossRefGoogle Scholar
  158. Norris JR, Read DJ, Varma AK (1992) Methods in microbiology, vol 24. Academic Press, London Ogner G (1983) Digestion of plants and organic soils using nitric acid, hydrogen peroxide and UV radiation. Commun Soil Sci Plant Anal 14: 936–943Google Scholar
  159. Ohwaki Y, Hirata H (1990) Phosphorus absorption by chickpea (Cicer arietinum) as affected by VA mycorrhiza and carboxylic acids in root exudates. In: van Beusichem ML (ed) Plant nutrition–physiology and applications. Kluwer, Amsterdam, pp 171–177CrossRefGoogle Scholar
  160. Ohwaki Y, Hirata H (1992) Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid levels in roots. Soil Sci Plant Nutr 38: 235–243CrossRefGoogle Scholar
  161. Olsson PA, Bääth E, Jakobson I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microbiol 63: 3531–3538PubMedGoogle Scholar
  162. Papavizas GC, Davey CB (1961) Extent and nature of the rhizosphere of lupinus. Plant Soil 14: 215–236CrossRefGoogle Scholar
  163. Passioura JB (1972) Quantitative autoradiography in the presence of crossfire. In: Lüttge U (ed) Microradioautography and Electron Probe Analysis, Springer, Berlin Heidelberg New York, pp 49–59CrossRefGoogle Scholar
  164. Passioura JB, Munns R (1984) Hydraulic resistance of plants. II. Effects of rooting medium, and time of day, in barley and lupin. Aust J Plant Physiol 11: 341–350Google Scholar
  165. Pearson RW (1974) Significance of rooting pattern to crop production and some problems of root research. In: Carson EW (ed) The Plant Root and Its Environment. The University Press of Virginia, Charlottesville, pp 247–270Google Scholar
  166. Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196: 788–795CrossRefGoogle Scholar
  167. Petersen W, Böttger M (1991) Contribution of organic acids to the acidification of the rhizosphere of maize seedlings. Plant Soil 132: 159–163Google Scholar
  168. Powlson DS, Jenkinson DS (1976a) The effects of biocidal treatments on metabolism in soil. I. Fumigation with chloroform. Soil Biol Biochem 8: 167–177Google Scholar
  169. Powlson DS, Jenkinson DS (1976b) The effects of biocidal treatments on metabolism in soil. II. Gamma irradiation, autoclaving. Soil Biol Biochem 8: 179–188Google Scholar
  170. Prikryl Z, Vancura V (1980) Root exudates of plants. VI. Wheat exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. Plant Soil 57: 69–83Google Scholar
  171. Reidenbach G, Horst WJ (1995) Bedeutung verschiedener Wurzelzonen für die Nitrataufnahmerate bei Mais (Zea mays L.). VDLUFA-Schriftenr 40: 121–124Google Scholar
  172. Reining E, Merbach W, Knof G (1995) 15 N distribution in wheat and chemical fractionation of root-borne 15 N in the soil. Isotopes Environ Health Stud 31: 345–349Google Scholar
  173. Riley D, Barber SA (1971) Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root induced pH changes at the root-soil interface. Soil Sci Soc Am Proc 35: 301–306CrossRefGoogle Scholar
  174. Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130: 127–134CrossRefGoogle Scholar
  175. Rufty TW Jr, Thomas RF, Remmler JL, Campbell WH, Volk RJ (1986) Intercellular localization of nitrate reductase in roots. Plant Physiol 82: 675–680PubMedCrossRefGoogle Scholar
  176. Sakai H, Tadano T (1993) Characteristics of response of acid phosphatase secreted by the roots of several crops to various conditions in the growth media. Soil Sci Plant Nutr 39: 437–444CrossRefGoogle Scholar
  177. Sanders FE (1971) Effect of root and soil properties on the uptake of nutrients by competing roots. D Phil Thesis, Oxford, EnglandGoogle Scholar
  178. Schaffer GF, Peterson RL (1993) Modifications to clearing methods used in combination with vital staining of roots colonized with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 4: 29–35CrossRefGoogle Scholar
  179. Schaller G, Fischer WR (1985) pH-Änderungen in der Rhizosphäre von Mais and Erdnußwurzeln. Z Pflanzenernähr Bodenkd 148: 306–320Google Scholar
  180. Schenk NC (1982) Methods and principles of mycorrhizal research. The American Phytopathological Society, St Paul, MinnesotaGoogle Scholar
  181. Schönwitz R, Ziegler H (1982) Exudation of water soluble vitamins and some carbohydrates by intact roots of maize seedlings (Zea mays L.) into a mineral nutrient solution. Z Pflanzenphysiol 107: 7–14Google Scholar
  182. Schwab SM, Menge JA, Leonard RT (1983) Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass roots in relation to vesicular-arbuscular mycorrhiza formation. Plant Physiol 73: 761–765PubMedCrossRefGoogle Scholar
  183. Seggewiss B, Jungk A (1988) Einfluss der Kaliumdynamik im wurzelnahen Boden auf die Magnesiumaufnahme von Pflanzen. Z Pflanzenernähr Bodenkd 151: 91–96CrossRefGoogle Scholar
  184. Shepherd T, Davies HV (1994a) Effect of exogenous amino acids, glucose and citric acid on the patterns of short-term accumulation and loss of amino acids in the root-zone of sand-cultured forage rape (Brassica napus L.). Plant Soil 158: 111–118CrossRefGoogle Scholar
  185. Shepherd T, Davies HV (1994b) Patterns of short-term amino acid accumulation and loss in the root-zone of liquid cultured forage rape (Brassica napus L.). Plant Soil 158: 99–109CrossRefGoogle Scholar
  186. Siddiqi MY, Glass ADM (1987) Regulation of K+ influx in barley: evidence for a direct control of influx by K’ concentration of root cells. J Exp Bot 38: 935–947CrossRefGoogle Scholar
  187. Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW Jr (1990) Studies of the uptake of nitrate in barley. I. Kinetics of 13NO3 influx. Plant Physiol 93: 1426–1432PubMedCrossRefGoogle Scholar
  188. Siddiqi MY, Glass ADM, Ruth TJ (1991) Studies of the uptake of nitrate in barley. III. Compartmentation of NO3. J Exp Bot 42: 1455–1463CrossRefGoogle Scholar
  189. Siebrecht S, Mäck G, Tischner R (1995) Function and contribution of the root tip in the induction of NO3- uptake along the barley root axis. J Exp Bot 46: 1669–1676CrossRefGoogle Scholar
  190. Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agriculture. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn, GermanyGoogle Scholar
  191. Sihna BK, Singh NT (1976) Salt distribution around roots of wheat under different transpiration rates. Plant Soil 44: 141–147CrossRefGoogle Scholar
  192. Simon L (1996) Phylogeny of the Glomales - deciphering the past to understand the present. New Phytol 133: 95–101CrossRefGoogle Scholar
  193. Smart DR, Ferro A, Ritchie K, Bugbee BG (1995) On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations. Physiol Plant 95: 533–540PubMedCrossRefGoogle Scholar
  194. Smiley RW (1974) Rhizosphere pH as influenced by plants, soils and nitrogen fertilizers. Soil Sci Soc Am Proc 38: 795–799CrossRefGoogle Scholar
  195. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San DiegoGoogle Scholar
  196. Starkey RL (1931) Some influences of the development of higher plants upon the microorganisms in the soil: IV. Influences of proximity to roots on abundance and activity of micro-organisms. Soil Sci 32: 367–393CrossRefGoogle Scholar
  197. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1997) Inhibition of Fusarium oxysporum f. sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Can J Bot 75: 998–1005CrossRefGoogle Scholar
  198. Steyn WJA (1959) Leaf analysis. Errors involved in the preparative phase. J Agric Food Chem 7: 344–348CrossRefGoogle Scholar
  199. Swiader JM, Freiji FG (1996) Characterizing nitrate uptake in lettuce using very-sensitive ion chromatography. J Plant Nutr 19: 15–27CrossRefGoogle Scholar
  200. Tadano T, Sakai H (1991) Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Sci Plant Nutr 37: 129–140CrossRefGoogle Scholar
  201. Tagaki S, Nomoto K, Takemoto T (1984) Physiological aspect of muginieic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7: 469–477CrossRefGoogle Scholar
  202. Tang C-S, Young C-C (1982) Collection and identification of allelopathic compounds from the undisturbed root system of Bigalte Limpograss (Hemarthria altissima). Plant Physiol 69: 155–160PubMedCrossRefGoogle Scholar
  203. Tanner W, Beevers H (1990) Does transpiration have an essential function in long-distance transport in plants? Plant Cell Environ 13: 745–750CrossRefGoogle Scholar
  204. Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3: 199–204CrossRefGoogle Scholar
  205. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87: 560–573CrossRefGoogle Scholar
  206. Trolldenier G (1988) Visualisation of oxidizing power of rice roots and of possible participation of bacteria in iron deposition. Z Pflanzenernähr Bodenkd 151: 117–121CrossRefGoogle Scholar
  207. Uren NC (1981) Chemical reduction of an insoluble higher oxide of manganese by plant roots. J Plant Nutr 4: 64–71CrossRefGoogle Scholar
  208. Uren NC, Reisenauer HM (1988) The role of root exudates in nutrient aquisition. Adv Plant Nutr 3: 79–114Google Scholar
  209. Van Vuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178: 185–192CrossRefGoogle Scholar
  210. Vaughan V, Cheshire MV, Ord BG (1994) Exudation of peroxidase from roots of Festuca rubra and its effects on exuded phenolic acids. Plant Soil 160: 153–155CrossRefGoogle Scholar
  211. von Wirén N, Mori S, Marschner H, Römheld V (1994) Iron inefficiency in maize mutant Ysl (Zea mays L. cv Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106: 71–77Google Scholar
  212. von Wirén N, Römheld V, Shioiri T, Marschner H (1995) Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm. New Phytol 130: 511–521CrossRefGoogle Scholar
  213. Weber E, Saxena MC, George E, Marschner H (1993) Effect of vesicular-arbuscular mycorrhiza on vegetative growth and harvest index of chickpea grown in northern Syria. Field Crops Res 32: 115–128CrossRefGoogle Scholar
  214. Weiß J (1991) Ionenchromatographie, 2nd edn. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  215. White PJ, Banfield J, Diaz M (1992) Unidirectional Ca’ fluxes in roots of rye (Secale cereale L.). A comparison of excised roots with roots of intact plants. J Exp Bot 43: 1061–1074Google Scholar
  216. White RT Jr, Douthit GE (1985) Use of microwave oven and nitric acid-hydrogen peroxide digestion to prepare botanical materials for elemental analysis. J/Assoc Off Anal Chem 68: 766–769Google Scholar
  217. Wilkinson HF, Loneragen JF, Quirk JP (1968a) Calcium supply to plant roots. Science 161: 1245–1246PubMedCrossRefGoogle Scholar
  218. Wilkinson HF, Loneragen JF, Quirk JP (1968b) The movement of zinc to plant roots. Soil Sci Soc Am Proc 32: 831–833CrossRefGoogle Scholar
  219. Williams RF (1948) The effects of phosphorus supply on the rates of intake of phosphorus and nitrogen and upon certain aspects of phosphorus metabolism in gramineous plants. Aust J Sci Res B1: 333–361Google Scholar
  220. Yoneyama T, Komamura K, Kumazawa K (1975) Nitrogen transport in intact corn roots. Soil Sci Plant Nutr 21: 371–377CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ch. Engels
    • 1
  • G. Neumann
    • 2
  • T. S. Gahoonia
    • 3
  • E. George
    • 2
  • M. Schenk
    • 4
  1. 1.AgrarökologieUniversität BayreuthBayreuthGermany
  2. 2.Institut für Pflanzenernährung (330)Universität HohenheimStuttgartGermany
  3. 3.Department of Agricultural ScienceThe Royal Veterinary & Agricultural UniversityFrederiksberg C, CopenhagenDenmark
  4. 4.Institut für PflanzenernährungUniversität HannoverHannoverGermany

Personalised recommendations