CpG Oligonucleotides as Immune Adjuvants

  • A. M. Krieg
Conference paper
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 30)


In recent years, it has become increasingly clear that effective vaccination strategies require activation of both the innate and the acquired arms of immune defenses. Vaccines comprising purified protein antigens have been found to induce little or no immune response unless the vaccine also contains components with the ability to activate antigen-presenting cells (APCs). Upon activation, the APCs upregulate their expression of costimulatory molecules such as B7–1 and B7–2, whose expression is essential for the optimal induction of acquired immune responses. Recent studies have demonstrated that many adjuvants have direct stimulatory effects on APCs.


Costimulatory Molecule Antisense Nucleic Acid Aotus Monkey Immune Stimulatory Activity Deoxyribonucleic Acid Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anitescu M, Chace JH, Tuetken R, Yi A-K, Berg DJ, Krieg AM, Cowdery JS (1997) Interleukin-10 functions in vitro and in vivo to inhibit bacterial DNA-induced secretion of interleukin-12. J Interferon Cytokine Res 17: 781PubMedCrossRefGoogle Scholar
  2. Ballas ZK, Rasmussen WL, Krieg AM (1996) Induction of natural killer activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 157: 1840PubMedGoogle Scholar
  3. Bendigs S, Salzer U, Lipford GB, Wagner H, Heeg K (1999) CpG-oligodeoxynucleotides costimulate primary T cells in the absence of APC. Eur J Immunol 29: 1209PubMedCrossRefGoogle Scholar
  4. Bennett RM, Gabor GT, Merritt MM (1985) DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. J Clin Invest 76: 2182Google Scholar
  5. Bird AP (1987) CpG islands as gene markers in the vertebrate nucleus. Trends Genet 3: 342CrossRefGoogle Scholar
  6. Brazolot Millan CL, Weeratna R, Krieg AM, Siegrist CA, Davis HL (1998) CpG DNA can induce strong Thl humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc Natl Acad Sci USA 95: 15553PubMedCrossRefGoogle Scholar
  7. Broide D, Schwarze J, Tighe H, Gifford T, Nguyen M-D, Malek S, Van Uden J, Martin-Orozco E, Gelfand EW, Raz E (1998) Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. J Immunol 161: 7054PubMedGoogle Scholar
  8. Chace JH, Hooker NA, Mildenstein KL, Krieg AM, Cowdery JS (1997) Bacterial DNA-induced NK cell IFN-y production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol 84: 185PubMedCrossRefGoogle Scholar
  9. Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV (1997) CpG oligodeoxynucleotides act as adjuvants that switch on Thl immunity. J Exp Med 186: 1623PubMedCrossRefGoogle Scholar
  10. Chu RS, Askew D, Noss EH, Tobian A, Krieg AM, Harding CV (1999) CpG oligodeoxynucleotides downregulate macrophage class II MHC antigen processing. J Immunol 163: 1188PubMedGoogle Scholar
  11. Cowdery JS, Chace JH, Yi A-K, Krieg AM (1996) Bacterial DNA induces NK cells to produce interferon-y in vivo and increases the toxicity of lipopolysaccharides. J Immunol 156: 4570PubMedGoogle Scholar
  12. Davis HL, Weeratna R, Waldschmidt TJ, Tygrett L, Schorr J, Krieg AM (1998) CpG DNA is a potent adjuvant in mice immunized with recombinant hepatitis B surface antigen. J Immunol 160: 870PubMedGoogle Scholar
  13. Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271: 348PubMedCrossRefGoogle Scholar
  14. Gilkeson GS, Ruiz P, Pippen AMM, Alexander AL, Lefkowith JB, Pisetsky DS (1996) Modulation of renal disease in autoimmune NZB/NZW mice by immunization with bacterial DNA. J Exp Med 183: 1389PubMedCrossRefGoogle Scholar
  15. Gilkeson GS, Conover J, Halpern M, Pisetsky DS, Feagin A, Klinman DM (1998) Effects of bacterial DNA on cytokine production by (NZB/NZW)F1 mice. J Immunol 161: 3890PubMedGoogle Scholar
  16. Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, Heeg K, Lipford GB, Wagner H (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17: 6230PubMedCrossRefGoogle Scholar
  17. Han J, Zhu Z, Hsu C, Finley WH (1994) Selection of antisense oligonucleotides on the basis of genomic frequency of the target sequence. Antisense Nucleic Acid Drug Dev 4: 53Google Scholar
  18. Hartmann G, Krieg AM (1999) CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Ther 6: 893PubMedCrossRefGoogle Scholar
  19. Hartmann G, Weiner G, Krieg AM (1999) CpG DNA as a signal for growth, activation and maturation of human dendritic cells. Proc Natl Acad Sci USA 9305Google Scholar
  20. Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC (1998) Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Thl responses by immunostimulatory DNA. J Immunol 161: 3042PubMedGoogle Scholar
  21. Jones TR, Obaldia N III, Gramzinski RA, Charoenvit Y, Kolodny N, Davis HL, Krieg AM, Hoffman SL (1999) Synthetic oligodeoxynucleotides containing CpG motifs enhance immunogenicity of a peptide malaria vaccine in Aotus monkeys. Vaccines 17: 3065CrossRefGoogle Scholar
  22. Kline JN, Waldschmidt TJ, Businga TR, Lemish JE, Weinstock JV, Thorne PS, Krieg AM (1998) Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J Immunol Cutting Edge 160: 2555Google Scholar
  23. Kovarik J, Bozzotti P, Love-Homan L, Pihlgren M, Davis HL, Lambert P-H, Krieg AM, Siegrist C-A (1999) CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but may fail to fully redirect Th2 responses established by neonatal priming. J Immunol 162: 1611PubMedGoogle Scholar
  24. Krieg AM (1995) CpG DNA: a pathogenic factor in systemic lupus erythematosus? J Clin Immunol 15: 284PubMedCrossRefGoogle Scholar
  25. Krieg AM, Yi A-K, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky G, Klinman D (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546PubMedCrossRefGoogle Scholar
  26. Krieg AM, Matson S, Herrera C, Fisher E (1996) Oligodeoxynucleotide modifications determine the magnitude of immune stimulation by CpG motifs. Antisense Nucleic Acid Drug Dev 6: 133PubMedCrossRefGoogle Scholar
  27. Kumar A, Yang YL, Flati V, Der S, Kadereit S, Deb A, Hague J, Reis L, Weissmann C, Williams BR (1997) Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kB. EMBO J 16: 406PubMedCrossRefGoogle Scholar
  28. Lipford GB, Bauer M, Blank C, Reiter R, Wagner H, Heeg K (1997) CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur J Immunol 27: 2340PubMedCrossRefGoogle Scholar
  29. Liu H-M, Newbrough SE, Bhatia SK, Dahle CE, Krieg AM, Weiner GJ (1998) Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colony-stimulating factor. Blood 92: 3730PubMedGoogle Scholar
  30. MacFarlane DE, Manzel L (1998) Antagonism of immunostimulatory CpGoligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol 160: 1122PubMedGoogle Scholar
  31. McCluskie MJ, Davis HL (1998) CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J Immunol 161: 4463PubMedGoogle Scholar
  32. Messina JP, Gilkeson GS, Pisetsky DS (1991) Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J Immunol 147: 1759PubMedGoogle Scholar
  33. Moldoveanu Z, Love-Homan L, Huang WQ, Krieg AM (1998) CpG DNA, a novel adjuvant for systemic and mucosal immunization with influenza virus. Vaccine 16: 1216PubMedCrossRefGoogle Scholar
  34. Mor G, Singla M, Steinberg AD, Hoffman SL, Okuda K, Klinman DM (1997) Do DNA vaccines induce autoimmune disease? Hum Gene Ther 8: 293PubMedCrossRefGoogle Scholar
  35. Redford TW, Yi A-K, Ward CT, Krieg AM (1998) Cyclosporine A enhances IL-12 production by CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides. J Immunol 161: 3930PubMedGoogle Scholar
  36. Roman M, Martin-Orozco E, Goodman JS, Nguyen M-D, Sato Y, Ronaghy A, Kornbluth RS, Richman DD, Carson DA, Raz E (1997) Immunostimulatory DNA sequences function as T helper-l-promoting adjuvants. Nat Med 3: 849PubMedCrossRefGoogle Scholar
  37. Sparwasser T, Miethke T, Lipford G, Borschert K, Hacker H, Heet K, Wagner H (1997a) Bacterial DNA causes septic shock. Nature 386: 336PubMedCrossRefGoogle Scholar
  38. Sparwasser T, Miethe T, Lipford G, Erdmann A, Hacker H, Heeg K, Wagner H (1997b) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-a-mediated shock. Eur J Immunol 27: 1671PubMedCrossRefGoogle Scholar
  39. Sparwasser T, Koch E-S, Vabulas RIVI, Heeg K, Lipford GB, Ellwart J, Wagner H (1998) Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 28: 2045PubMedCrossRefGoogle Scholar
  40. Stacey KJ, Sweet MJ, Hume DA (1996) Macrophages ingest and are activated by bacterial DNA. J Immunol 157: 2116PubMedGoogle Scholar
  41. Sun S, Cai Z, Langlade-Demoyen P, Kosaka H, Brunmark A, Jackson MR, Peterson PA, Sprent J (1996) Dual function of drosophilia cells as APCs for naive CD8+ T cells: implications for tumor immunotherapy. Immunity 4: 555PubMedCrossRefGoogle Scholar
  42. Sun S, Beard C, Jaenisch R, Jones P, Sprent J (1997) Mitogenicity of DNA from different organisms for murine B cells. J Immunol 159: 3119PubMedGoogle Scholar
  43. Sun S, Zhang X, Tough DF, Sprent J (1998) Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 188: 2335PubMedCrossRefGoogle Scholar
  44. Tokunaga T, Yamamoto H, Shimada S, Abe H, Fukuda T, Fujisawa Y, Furutani Y, Yano O, Kataoka T, Sudo T, Makiguchi N, Suganuma T (1984) Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis GCG. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 72: 955Google Scholar
  45. Tonkinson JL, Stein CA (1994) Patterns of intracellular compartmentalization, trafficking and acidification of 5¢-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucl Acids Res 22: 4268PubMedCrossRefGoogle Scholar
  46. Wang Z, Karras JG, Colarusso TP, Foote LC, Rothstein TL (1997) Unmethylated CpG motifs protect murine B lymphocytes against Fas-mediated apoptosis. Cell Immunol 180: 162PubMedCrossRefGoogle Scholar
  47. Weiner GJ, Liu H-M, Wooldridge JE, Dahle CE, Krieg AM (1997) Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Nati Acad Sci USA 94: 10833CrossRefGoogle Scholar
  48. Yamamoto S, Kuramoto E, Shimada S, Tokunaga T (1988) In vitro augmentation of natural killer cell activity and production of interferon-a/13 and -y with deoxyribonucleic acid fraction from Mycobacterium bovis BCG. Jpn J Cancer Res 79: 866PubMedCrossRefGoogle Scholar
  49. Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T (1992a) Unique palindromic sequences in synthetic oligonucleotides are required to induce INF and augment INF-mediated natural killer activity. J Immunol 148: 4072PubMedGoogle Scholar
  50. Yamamoto S, Yamamoto T, Shimada S, Kuramoto E, Yano O, Kataoka T, Tokunaga T (1992b) DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol 36: 983PubMedGoogle Scholar
  51. Yi A-K, Krieg AM (1998a) CpG DNA rescue from anti-IgM induced WEHI231 B lymphoma apoptosis via modulation of IkBa and IkBb and sustained activation of nuclear factor-kB/c-Rel. J Immunol 160: 1240PubMedGoogle Scholar
  52. Yi A-K, Krieg AM (1998b) Rapid induction of mitogen activated protein kinases by immune stimulatory CpG DNA. J Immunol 161: 4493PubMedGoogle Scholar
  53. Yi A-K, Hornbeck P, Lafrenz DE, Krieg AM (1996a) CpG DNA rescue of murine B lymphoma cells from anti-IgM induced growth arrest and programmed cell death is associated with increased expression of c-myc and bc1-xL. J Immunol 157: 4918PubMedGoogle Scholar
  54. Yi A-K, Klinman DM, Martin TL, Matson S, Krieg AM (1996b) Rapid immune activation by CpG motifs in bacterial DNA: systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol 157: 5394PubMedGoogle Scholar
  55. Yi A-K, Tuetken R, Redford T, Kirsch J, Krieg AM (1998a) CpG motifs in bacterial DNA activates leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol 160: 4755PubMedGoogle Scholar
  56. Yi A-K, Chang M, Peckham DW, Krieg AM, Ashman RF (1998b) CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol 160: 5898PubMedGoogle Scholar
  57. Zhao Q, Matson S, Herrara CJ, Fisher E, Yu H, Waggoner A, Krieg AM (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Nucleic Acid Drug Dev 3: 53Google Scholar
  58. Zhao Q, Temsamani J, Iadarola PL, Jiang Z, Agrawal S (1996) Effect of different chemically modified oligodeoxynucleotides on immune stimulation. Biochem Pharmacol 51: 173PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • A. M. Krieg

There are no affiliations available

Personalised recommendations